
Solving the Precedence Constrained Vehicle

Routing Problem with Time Windows

Using the Reactive Tabu Search Metastrategy

by

William Paul Nanry, B.S., M.A.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May, 1998

'PTSTRfeirnON STATEMKri-nr
Approved for public release;

Distribution Unlimited iK'iÖ ttUüiÄ
ilSÖFBG^BS

Solving the Precedence Constrained Vehicle

Routing Problem with Time Windows

Using the Reactive Tabu Search Metastrategy

Approved by
Dissertation Committee:

v :j^.-P &

Dedication

In faithful service to my Lord and Savior, Jesus Christ

I will extol the Lord at all times; his praise will always be on my lips.
My soul will boast in the Lord; let the afflicted hear and rejoice.

Glorify the Lord with me; let us exalt his name together.
I sought the Lord, and he answered me; he delivered me from all my fears.

Psalm 34:1-4

Acknowledgments

I want to convey my deepest appreciation to my family for their untiring

support and love while I completed my dissertation. Dori, Chris and Bill

contributed more to this effort than they will ever know. Their love and devotion

truly helped preserve my sanity during the stressful times of this assignment.

I especially want to thank my supervisor, Professor J. Wesley Barnes, for

his assistance. Professor Barnes patiently mentored me, helping me to set

tangible goals so I would not become overwhelmed by the research. He

enthusiastically responded to all my questions and motivated me to explore new

avenues in my research. His devotion, expert advice and effective guidance

greatly assisted me in completing this research.

I finally wish to thank the members of my dissertation committee - Drs.

Paul A. Jensen, David P. Morton, Valerie Tardif, Uttarayan Bagchi and John

Chambers. I appreciated their willingness to make my research effort a truly

worthwhile process. Their professional expertise made my research a

challenging and rewarding experience. They set an example of professional

excellence I hope to emulate.

William P. Nanry

Austin, TX
May 15,1998

Solving the Precedence Constrained Vehicle

Routing Problem with Time Windows

Using the Reactive Tabu Search Metastrategy

Publication No.

William Paul Nanry, Ph.D.

The University of Texas at Austin, 1998

Supervisor: J. Wesley Barnes.

The vehicle routing problem (VRP) is associated with the design of a set

of minimum cost routes for a fleet of vehicles to serve, exactly once, a set of

customers with known demands. The pickup and delivery problem with time

windows (PDPTW) is a generalization of the VRP. The PDPTW constructs

optimal routes to satisfy transportation requests, each requiring both pickup and

delivery under capacity, time window, precedence and coupling constraints. This

dissertation presents a reactive tabu search (RTS) approach to solve the PDPTW

and illustrates how to transform generalized precedence constrained routing

problems with time windows (PCRPTW) into equivalent PDPTWs.

VI

The PDPTW algorithm uses three distinct search neighborhoods that

capitalize on the dominance of the precedence and coupling constraints. The

algorithm employs a multineighborhood strategic search methodology, to

alternate between search neighborhoods in order to negotiate different regions of

the solution space and alter directions of search. All tours generated by the

search require that suppliers and the corresponding deliveries be located on the

same route and ordered properly. Because RTS explores infeasible solutions, it

can discover time window or load infeasible solutions having significantly lower

objective values than the optimal.

This dissertation also establishes benchmark data sets for the PDPTW

through the modification of the input data structure for Solomon's (1987)

benchmark VRPTW data sets. Computational results substantiate the solution

quality and efficiency of the PDPTW algorithm when compared against one

heuristic and two exact VRPTW algorithms.

Finally, this dissertation demonstrates how to transform representative

generalized-'PCRPTWs into PDPTWs. Modifications to the input data structure

are presented and example problems are used to display the transformations.

Vll

Table of Contents

Dedication iv

Acknowledgments v

Abstract vi

List of Tables xii

List of Figures xv

Chapter 1: Introduction 1

1.1 The Time Windows Constrained Routing Problems 1

1.2 The search engine 4

1.3 Research Objectives 6

Chapter 2: Literature Review 9

2.1 The Vehicle Routing Problem with Time Windows 9

2.1.1 ExactMethods 10

2.1.2 Heuristic Methods 13

2.2 Pickup and Delivery and Dial-a-Ride Problems with Time

Windows 21

2.2.1 ExactMethods 22

2.2.2 Heuristic Methods 25

2.3 Reactive Tabu Search (RTS) 27

2.3.1 Tabu Search Algorithms from the Literature 27

vni

2.3.2 The Reactive Tabu Search (RTS) Heuristic 39

Chapter 3: Detailed Problem Description 42

3.1 The Advanced Request Problem 43

3.2 Objectives 43

3.3 Side Constraints 45

3.4 PDPTW Assumptions, Notation and Definitions 48

Chapter 4: The Algorithm 55

4.1 The Input Data and Initial Tour 55

4.1.1 The Benchmark Data Sets 55

4.1.2 The Input Data Structure 56

4.1.3 The Optimal Solution vs Best Solution Found 59

4.1.4 Infeasible Initial Tour 60

4.1.5 Feasible Initial Tour with a Vehicle Reduction Phase 62

4.1.6 Feasible Initial Tour without a Vehicle Reduction Phase 63

4.2 Neighborhood Search Strategies 63

4.2.1 Single Precedence Ordered Subset Insertion (SPI) 64

4.2.2 Swapping Pairs Between Routes 67

4.2.3 Within Route Insertion (WRI) ... 70

4.2.4 Limiting the Search 73

4.2.5 Time Windows Reduction 75

IX

4.2.6 Inadmissible Arcs 77

4.3 Two-Level Open Hashing Structure 78

4.4 The Tabu Criteria, Length and Data Structures 79

4.5 The Algorithms 82

4.6 Computational Results 96

4.6.1 25-customer problems 98

4.6.2 50-customer problems 103

4.6.3 100-customer problems 114

4.7 Conclusions 120

Chapter 5: The Generalized Precedence Scenarios 123

5.1 The Single Supplier Supporting Several Delivery Locations 124

5.2 Several Suppliers Supporting a Single Delivery Location 134

5.3 The Serial Precedence Model 141

5.4 Conclusions 150

Chapter 6: Areas for Further Research and Summary 153

6.1 Areas for Further Investigation 153

6.2 Extensions to this Research 157

6.3 Major Contributions of this Research 160

6.4 Summary 162

Appendix A: Data Sets Examined 164

Appendix B: Example of the Modified Data Structure 168

AppendixC: The Code for the PDPTW Algorithm 173

Reference List 215

Vita

XI

List of Tables

Table 1 - Effect of iterations on the search 87

Table2: INITresults,25-customers 99

Table3: INITinfeasibleresults,25-customers 100

Table4: NEW results, 25-customers 101

Table 5: NEW infeasible results, 25-customers 102

Table6: NEWcresults,25-customers 102

Table 7: NEWc infeasible results, 25-customers 103

Table 8 - 50-customer INIT results where optimal schedules are known .. 105

Table 9 - INIT results for remaining 50-customer problems 106

Table 10-INITresults, 50-customers 107

Table 11 - Infeasible solutions using INIT 108

Table 12 - 50-customer NEW results where optimal schedules are known 108

Table 13 - NEW results for remaining 50-customer problems 109

Table 14 - NEW results, 50-customers 110

Table 15 - Infeasible tours using NEW Ill

Table 16 - 50-customer NEWc results where optimal schedules are

known 112

Table 17 - NEWc results for remaining 50-customer problems 112

Table 18 - NEWc results, 50-customers 114

xn

Table 19 - NEWc infeasible results, 50-customers 114

Table 20 - 100-customer NEW results where optimal schedules are

known 115

Table 21 - NEW results for remaining 100-customer problems 116

Table 22 - NEW results, 100-customers 117

Table 23 - 100-customer NEWc results where optimal schedules are

known 118

Table 24 - NEWc results for remaining 100-customer problems 119

Table 25 - NEWc results, 100-customers 119

Table 26: The supporting input data structure for the single-to-many

model 124

Table 27: The supporting input data structure for the transformed model . 125

Table 28: Optimal Tour Data for SINGLEC 129

Table 29: Optimal Tour Data for SINGLER 130

Table 30: Infeasible Tour Data for SINGLER 132

Table 31: Optimal Tour Data for SINGLEM 134

Table 32: Optimal Tour Data for Route 29 of MANYC 136

Table 33: Optimal Tour Data for MANYR 139

Table 34: Optimal Tour for MANYM 140

Table 3 5: Initial input data for the serial precedence model 141

xm

Table 36: The transformed input data structure for the serial

precedence model 142

Table 37: Optimal Tour Data for SERIAL1 144

Table 38: Optimal Tour Data for Route 32 of SERIAL2 145

Table39: Optimal Tour Results for SERIAL3 147

Table 40: Infeasible Tour Results for SERIAL3 149

Table 41: Input Data for Generalized Scenario 151

Table 42: The Transformed Input Data Set 151

Table B.l: Original Solomon Data for 25-customer rl 10 170

Table B.2: Modified Data Structure for PDPTW - nrl 10 171

TableB.3: Optimal Tour for nrl 10 172

xiv

List of Figures

Figure 1: An Example of Single Precedence Ordered Subset Insertion ... 64

Figure 2: The Swap Pairs Neighborhood Search 68

Figure3: The WRI Neighborhood Search 71

Figure 4: The generalized precedence digraph 124

Figure 5: The transformed digraph 125

xv

Chapter 1

Introduction

Economic incidents such as the oil crisis of the early 1970's, deregulation

of the U.S. airline and trucking industry in the 1980's and the rapidly declining

military budget have motivated both private companies and academic researchers

to vigorously pursue new methods to improve the efficiency of logistics

distribution and transportation. This rekindled interest has fueled the recent

development in metaheuristic procedures. New developments in adaptive

memory strategies of tabu search (TS) have been especially productive in solving

difficult combinatorial optimization problems with greater effectiveness than

ever before. Time windows constrained routing problems form a large segment

of this class of combinatorial optimization problems.

In this chapter we overview time window constrained routing problems,

discuss the search engine and outline the major objectives of this research.

1.1 Time Windows Constrained Routing Problems

The vehicle routing problem (VRP) involves designing a set of minimum

cost routes, beginning and terminating at a depot, for a fleet of vehicles which

services a set of customers with known demands exactly once. The vehicles will

either deliver supplies to, or collect products from, customers along their

designated routes. The number of customers that may be serviced by the

vehicle is limited by both the vehicle's cargo capacity and by the time available to

service the customers. The temporal aspect of these intrinsically spatial problems

has become increasingly important as manufacturing, service and transportation

companies have tried to not only cut their logistics costs, but also to provide

superior service in competitive environments. The time dimension has been

incorporated in these problems in the form of customer-imposed time window

constraints (VRPTW) (Ball et al. 1995,35). These constraints prohibit customer

service starting prior to a prescribed earliest time and service may not begin after

a specified latest time. This added complexity of allowable delivery time

windows further complicates the vehicle routing problem.

The pickup and delivery problem with time windows (PDPTW) is a

generalization of the VRPTW. The PDPTW requires satisfying a set of

transportation requests, known in advance, by a homogeneous vehicle fleet

housed at one depot. Each transportation request requires picking up material at

a predetermined location during its associated time window and delivering it to a

"paired" destination during its time window. Loading and unloading times are

incurred at each location. In addition to the above precedence constraints, each

route must satisfy coupling constraints since paired pickup and delivery locations

must be serviced by the same vehicle. Precedence and coupling constraints are

viewed as "hard" constraints and will not be violated at any iteration. Since the

load fluctuates depending on the sequencing of customers on a vehicle route, the

planning horizon can be more restrictive to the PDPTW than the VRP. A further

generalization of the PDPTW is the generalized precedence constrained routing

problem with time windows (PCRPTW). The PCRPTW requires the design of

optimal routes to satisfy transportation requests, each requiring pickup at one or

several suppliers, where order for pickup may or may not be predetermined, with

delivery to one or several destinations, again, where the order for delivery may or

may not be preordained.

Precedence constrained routing problems arise under a variety of

circumstances. They describe situations in which vehicles, aircraft, trucks, even

people, must travel to a variety of places to deliver and/or pick up goods and

provide services. Some practical applications include the dial-a-ride problem,

airline scheduling, bus routing, tractor-trailer problems, helicopter support of

offshore oil field platforms and logistics and maintenance support. They also

arise in less obvious situations such as VLSI circuit design, flexible

manufacturing systems and evacuating casualties.

One scenario where the solution of these types is important is in the

operation of a fleet of supply vehicles. The enormous costs of acquisition or

leasing of additional vehicles often compels managers to exhaust the capacity of

the existing fleet while increasing fuel, maintenance and driver overtime costs

pressure vehicle routes to be as short as possible.

Although time windows constrained routing problems may be simply

stated they are usually extremely difficult to solve. The most basic problem

considered in this research, the traveling salesman problem with time windows,

is known to be NP-cowp/ete (Savelsbergh, 1985).

Motivation for the research presented in this dissertation is rooted in the

operations of the Defense Logistics Agency (DLA). DLA operates a variety of

transportation services arid is responsible for coordinating and scheduling the

logistics support for all three branches of the US Armed Services.

1.2 The Search Engine

Time window constraints usually complicate the search process and lead

to a distinctly different solution space from instances with no TW constraints.

TW constraints may partition the solution space into disjoint feasibility regions.

This underlying structure defeats classical optimization techniques for all but the

smallest and most tightly constrained instances. A very robust search engine is

required to quickly determine near optimal solutions to this type of problem. The

associated search strategy must be able to traverse infeasible regions of the

solution space while searching for excellent feasible solutions. The search

neighborhood is restricted by precedence and coupling constraints and strong

time windows feasibility conditions. These restrictions augment the search's

efficiency by limiting the number of neighbor solutions that must be examined.

Once an "elite" solution is identified, the search needs to "intensify" the search in

the immediate vicinity to determine the possible presence of other elite solutions.

When too many solutions are being revisited, the search trajectory needs to be

altered to diversify and move the search into another region of the solution space.

Reactive tabu search (RTS) meets all these requirements and has proven to be

most effective in solving this class of combinatorial optimization problems

(Glover, 1996).

One of the benefits of RTS is its ability to traverse infeasible regions of

the solution space. While traversing infeasible regions, RTS often discovers

infeasible solutions having significantly lower objective values than the

optimum. These infeasible solutions can be valuable to managers desiring to

improve overall system performance at a reduced cost to the company. Since

violation of the precedence and coupling constraints are not allowed, infeasible

solutions will violate either time window or capacity constraints. Some time

window violations are negligible and would not have to be coordinated with the

customer. More significant time windows violations would have to be negotiated

with customers. If the customer permits a late delivery, the manager could

reduce the delivery charge to that customer while significantly lowering the

company's distribution costs.

1.3 Research Objectives

The primary objective of this research is to develop an efficient and

competitive solution approach to solve the pickup and delivery problem with

time windows (PDPTW). Inherent in this objective is the understanding that this

approach could handle diverse vehicle routing problem instances. Thus, this

research will develop methods to transform several generalized precedence

constrained routing problems with time windows (PCRPTW) into equivalent

PDPTWs.

To accomplish this objective the RTS metaheuristic as developed by

Battiti and Tecchioli (1994) will be employed. In contrast to simple local search

techniques, RTS does not stop when local improvement is not possible. The best

alternative in the current neighborhood is selected as the new solution, even if it

is worse than the current solution. This strategy allows the method to escape a

local optimum and explore a larger portion of the solution space. Any solutions

that would reverse the direction of the search by visiting recently visited moves

are considered tabu.

While RTS incorporates the basic parameters and memory structures of

tabu search, it dynamically adjusts the search parameters based on the quality of

the search path. The tuning is automated and executed while the algorithm runs

and monitors its past behavior. The quality of the search is determined by the

number of iterations occurring since the last time a particular solution has been

visited. High quality solution paths seldom revisit, or "cycle", to the same

solution. If a solution is repeated, RTS adjusts the tabu length search parameter

to discourage further repetitions. If numerous, high quality solutions are being

identified, RTS intensifies the search in that solution subspace to determine the

best solution in that locale. When too many solutions are repeated too often, the

search is assumed to be trapped in a local attractor basin. RTS provides a

diversification strategy that allows the search to overcome the "attraction" and

climb out of the local attractor basin into other regions of the solution space.

A key issue to the effective implementation of RTS is the accurate

identification of previously visited solutions. The two-level hashing scheme

proposed by Horowitz, Sahni and Freed, 1993, and implemented by Carlton,

1995, will also be implemented in this research. Many of the initial ideas for this

work, in addition to the two-level hashing, were taken from Carlton. The

two-level hashing structure has proven to be effective in minimizing collisions,

where two nonidentical solutions are incorrectly determined to be duplicate

solutions.

Chapter 2

Literature Review

The body of literature that exists for the efficient routing and scheduling

of transportation resources is overwhelming. Bodin et al. (1983) completed an

exhaustive review of exact and heuristic methods for the family of vehicle

routing problems. Solomon and Desrosiers (1988) survey solution techniques for

time window constrained problems and furnish 80 references. More recently,

Ball et al. (1995) provided an updated review for solving network routing

problems.

This review will focus on exact and heuristic methods developed for

solving the time constrained vehicle routing and pickup and delivery problems

(VRPTW and PDPTW) and previous tabu search methods used to solve vehicle

routing problems. The reader is referred to the reviews of Carlton (1995) and

Desrosiers, Dumas, Solomon and Soumis (1995) for alternate time window

constrained problems, like the traveling salesman problem with time windows

(TSPTW) and the shortest path problem with time windows (SPPTW).

2.1 The Vehicle Routing Problem with Time Windows

The VRPTW consists of designing a set of minimum cost routes,

originating and terminating at a common depot, for a fleet of vehicles serving a

set of customers with known demands. In a feasible schedule, customers are

visited exactly once, no vehicle capacity is exceeded, and each customer service

is provided within a specified time window.

The VRPTW generalizes the vehicle routing problem (VRP) by adding

time windows. Since the VRP is NP-hard so is the VRPTW. Even finding a

feasible solution to the VRPTW when the number of tours is fixed in advance is

NP-complete. It is therefore unlikely that an efficient polynomial algorithm will

be developed for the VRPTW.

Vehicle routing and scheduling problems with time window constraints

are typically encountered where the customer must provide access, verification or

payment upon delivery of the product or service. Bank deliveries, industrial

refuse collection and school bus routing and scheduling provide a few

representative examples of time constrained routing and scheduling problems.

2.1.1. Exact Methods

Desrochers, Lenstra, Savelsbergh and Soumis (1988) state that dynamic

programming and branch-and-bound methods are the primary approaches

considered for optimization of the VRPTW. Two preferred methods are set

partitioning, which solves a continuous relaxation of the problem using column

generation and the use of state space relaxation to compute lower bounds. They

10

conclude that optimization algorithms are unlikely to be able to solve large scale

problems.

Their conclusions are supported by Desrochers, Desrosiers and Solomon

(1992) who use a column generation scheme to solve the LP relaxation of the set

partitioning formulation of the VRPTW. Instead of initially fixing the fleet size,

they determine the minimal homogeneous fleet size simultaneously with the best

sets of routes and schedules. Before the authors solve the problem, they reduce

the time windows' widths to achieve a more tractable problem. Optimal solutions

are found for seven out of the twenty-one 100-customer problem sets

investigated. The consistently large computational cost incurred indicates a need

to pursue heuristic methods.

Earlier, Desrosiers, Soumis and Desrochers (1984) employed a column

generation scheme on a set partitioning problem solved with linear programming

and branch-and-bound to solve the VRPTW. The columns were generated by

using dynamic programming to solve a shortest path subproblem with time

windows on the nodes. The problem is a generalization of the /«-traveling

salesman problem. The optimal solution found first minimizes the number of

vehicles and for this number of vehicles, minimizes travel costs. Experimental

11

results are offered on six bus transportation problems along with numerous

problem variants.

Kolen, Rinooy Kan and Trienkens (1987) use the branch-and-bound

approach to solve the VRPTW for a fixed fleet of vehicles, with limited capacity,

stationed at a common depot. The authors used a shortest path labeling method

similar to Dijkstra's method. Their test problems were small, ranging from 6 to

only 15 customers. They verified that the width and number of time window

constraints significantly influenced the run time of their algorithm. As time

windows become larger, more feasible solutions need to be examined which

requires more time. The number of vehicles or capacity of the vehicles have

much less influence on the computational results. Their study also reveals the

difficulty in allowing vehicles to revisit a node.

The most recent and successful of the exact optimization methods was

developed by Kohl (1995). Like Desrochers, Desrosiers and Solomon (1992),

Kohl uses a decomposition method to solve the VRPTW. Kohl shows how the

constrained shortest path problem (SPP) can be solved efficiently and presents

several strategies for solving the coordinating master problem, primarily through

the use of branch-and-bound methods. The lower bound on the optimal objective

obtained from solving the SPP is improved further through the incorporation of

12

valid inequalities. This is the first application of valid inequalities on the

VRPTW and marks a significant computational improvement in solving the

VRPTW. Solutions to a large number of previously unresolved benchmark

problems by Solomon (1987) are reported. Of the 87 benchmark problems 70

were solved to optimality. Desrochers, Desrosiers and Solomon were able to

solve 50 of these benchmark problems.

2.1.2. Heuristic Methods

Since the cited optimal methods are effective only for relatively small

problems or problems with a tailored structure, researchers have pursued

heuristic approaches to solve the VRPTW. Some of the heuristic methods

developed garner nearly optimal solutions in only a fraction of the computational

cost.

Many route construction and improvement procedures have been

developed. Route construction algorithms shape a feasible solution by inserting

one unrouted customer into a current partial route at each iteration. Insertions

based on maximum savings, minimum additional distance and time, and nearest

neighbor concepts have been proposed (Ball 1995, 83). Local search techniques

search a neighborhood of the current solution to find a route with a superior

function value. The neighborhood of a route is the collection of all routes that

13

can be obtained from the current route by performing one move or

transformation. Branch exchange improvement methods are easy to implement

and are performed both within and between routes.

Some of the more recently published heuristic approaches are reviewed

below. For a more exhaustive account, refer to Bodin et al. (1983), Desrochers et

al. (1988) and Ball et al. (1995).

Baker and Schaffer (1986) use four route construction heuristics to

generate initial solutions to their two test data sets. The 2-opt and 3-opt branch

exchange improvement procedures are tailored to account for vehicle capacity

and time window constraints. Branch exchanges are sequentially considered,

first within a route and then between routes. Feasibility is maintained as routes

are reconfigured. Solomon, Baker and Schaffer (1988) employ within-route

branch exchange improvement procedures to significantly reduce computational

effort without degrading solution quality. They look for ways to minimize the

time window checks necessary to guarantee feasibility. Their results clearly

show advantages in using pre-processing for 3-opt branch exchange procedures.

Solomon (1987) analyzes and compares several tour building algorithms

for VRPTW. All algorithms use 2-opt refining procedures to improve the routes.

His computational results revealed that a sequential time-space based insertion

14

algorithm outperformed the other route construction heuristics for the VRPTW.

The sweep heuristic performed best on problems with many customers per

vehicle. The other two insertion heuristics minimize waiting time for problems

with short scheduling horizons. The time-oriented nearest neighbor heuristic also

had limited success on problems with long scheduling horizons and large vehicle

capacities. The savings heuristic did not perform well on any of Solomon's

100-customer benchmark problem sets. Solomon (1986) showed that the

VRPTW was significantly more difficult to solve than the VRP.

Solomon's insertion heuristic is quick and effective and is used quite

frequently to build initial feasible routes for other neighborhood search

techniques. The main problem with this method is that the last unrouted

customers tend to be widely dispersed over the geographic area yielding routes of

poor quality. Potvin and Rousseau (1993) used a parallel route building

philosophy coupled with a generalized regret measure to overcome the myopic

weakness of sequential approaches. This procedure was tested using Solomon's

100-customer benchmark problems. They showed that the parallel approach does

not work as well as a sequential approach for problems that are already clustered.

Savelsbergh (1992) studied the efficient implementation of

edge-exchange improvement methods when the objective is to minimize route

15

duration and the departure time of a vehicle at the depot is not fixed, but has to

fall within a time window. The author used a lexicographic search strategy in

combination with a set of global variables to test the feasibility of 2-exchanges,

backward Or- and forward Or-exchanges in constant time (also used in Van der

Bruggen et al.). The set of global variables made it possible to test the feasibility

of the exchange.

Koskosidis, Powell and Solomon (1992) proposed an iterative

optimization-based heuristic for solving the VRPTW predicated on the

Generalized Assignment Problem (GAP) Heuristic proposed by Fisher and

Jaikumar (1981). There are two subproblems in their formulation; an assignment

problem and the time window constrained TSP. The hard time window

constraints are relaxed and added into the objective function in a Lagrangian

relaxation fashion. Their algorithm achieved comparable results to the heuristics

applied by Solomon (1987) and Baker and Schaffer (1986) at a significantly

higher computational cost.

Balakrishnan (1993) used three simple heuristics to solve the VRPTW.

His heuristics are tested against Solomon's 100-customer benchmark problems.

It is important to note that Balakrishnan's algorithm did not yield better results

than Solomon or Koskosidis et al. (1992) in any of the scenarios. He only

16

obtained better results when he softened the time window constraints. The author

asserted that by controlling the amount of time window constraints that are

violated, he may find a marginally infeasible solution that is attractive based on a

lesser number of routes and total route distance.

Garcia, Potvin and Rousseau (1994) described a parallel Tabu search

heuristic for the VRPTW. The objective used was to minimize cost with a finite

number of vehicles. A special 2-opt exchange heuristic that preserves the

orientation of the routes was illustrated. This was combined with Or-opt

exchanges for solution improvement using Tabu search. The master processor

controls the Tabu search. The "slaves" are used to explore different

neighborhoods of the current solution. The master receives the best move

information from each slave and is able to make several modifications

simultaneously to the current solution. Their parallel algorithm improved upon

the best solutions found by Solomon (1987) on the benchmark 100-customer

problems but at a greater computational effort.

Rochat and Semet (1994) solved a real life routing problem involving the

transportation of pet food and flour in Switzerland. The problem considered a

wide variety of customers - local farmers to retailers and wholesalers - with

varying demands and different resupply schedules serviced by a heterogeneous

17

fleet of vehicles from a central depot. The authors used the time-space insertion

heuristic procedure proposed by Solomon (1987) to generate a quick feasible

initial solution. After each insertion, a 2-optimality routine was used to improve

the route. The key concept in this paper was how the authors handled

accessibility. Not all customers can be serviced by all types of vehicles. The

authors first solve a VRP restricted to the accessibility- constrained customers

and generate partial "compact" (clustered) routes. The second phase inserted

customers that are not constrained by type of vehicle.

Rochat and Semet employed a reactive tabu search strategy (to be

discussed later) to improve the solution. They tested their procedure on the

actual problem data. Their results were encouraging and showed how their

procedure minimized the infeasibilities that were already in the routes presently

used by the companies.

Recently, Carlton (1995) employed the reactive tabu search metastrategy

to solve the VRPTW. Many of the initial ideas for solving the PDPTW with

RTS were adopted from Carlton's work. Reactive tabu search incorporates the

basic parameters and memory structures of tabu search and, in addition, uses

routines allowing the algorithm to automatically adjust search parameters based

on the quality of the search (Carlton 1995,97). This search strategy permits the

18

search to cross infeasible regions in the state space in quest of feasible solution

tours. Carlton develops a two-level open hashing structure to efficiently record

the history of the solution tours. He tests his algorithm on the benchmark

problem sets proposed by Solomon (1987). His algorithm returned nearly

optimal tours for all problem instances in a fraction of the computational effort

required by the optimal approach by Desrochers et al. (1992). Results also

indicate that the reactive tabu search metastrategy regularly produces superior

solutions with much less computational effort than the best known heuristics.

His algorithm proved to be robust, efficient and flexible.

Potvin and Rousseau (1995) compared various iterative route

improvement heuristics. Only a few heuristics are useful when time windows are

present. They evaluated problems with tight, large and a mixture of tight and

large time windows. One of the best known approaches for modifying solutions

is the £-opt exchange heuristic. The complexity of this procedure is typically

polynomial, but the number of iterations required to find the local optimum is

exponential in the worst case. Classical &-opt exchange heuristics are not well

adapted to problems with time windows because most exchanges do not preserve

the orientation of the routes. Since customers are sequenced in accordance with

some time window measure, for example, the time window's upper bound or

19

midpoint, reversing some portion of a route is likely to produce an infeasible

solution. The authors proposed a 2-opt* exchange procedure that preserves the

orientation of the routes and introduced the last customers of one route at the end

of another route. Hence, the new solution is more likely to be feasible. The

Or-opt heuristic was also used for finer refinements where customers are close

from a spatial and temporal point of view. Their hybrid heuristic outperformed

the 3-opt procedure on almost all the test data sets.

Kontoravdis and Bard (1993) present a GRASP procedure for the

VRPTW including both delivery and pickup operations. The objective function

is the hierarchical vehicle objective which seeks first to minimize the number of

vehicles used, and secondly, to minimize the travel time. The search considers

only feasible solutions and includes a vehicle reduction phase (Carlton 1995,

199).

Recently, Taillard, Badeau, Gendreau, Guertin and Potvin (1996) solved

the VRPTW using Solomon's insertion heuristic to build routes and tabu search

to improve the solution using a new cross exchange heuristic that preserves the

orientation of the routes. They also provide an easy mechanism to swap

segments of routes that are close from a spatial and/or temporal viewpoint.

20

2.2 Pickup and Delivery and Dial-a-Ride Problems with Time Windows

The pickup and delivery problem with time windows (PDPTW) and the

dial-a-ride problem with time windows (DARPTW) are generalizations of the

VRPTW. Most approaches in the literature investigate minimizing two

objectives in hierarchical fashion. The algorithms attempt to first minimize the

number of routes required or total fixed vehicle costs incurred. Given the

minimum number of routes, the total travel time or distance is minimized. When

transporting personnel, a third objective that minimizes customer inconvenience

may also be considered. The hierarchical vehicle objective allows the

construction of lower bounds on the number of vehicles used (Kontoravdis and

Bard, 1993) which governs the notion of optimality with respect to the primary

objective within the hierarchy.

The constraint set for the PDPTW is even more complex than the

VRPTW. In addition to the capacity constraints on the vehicles, time window

constraints for each stop and visiting constraints ensure that each stop is visited

exactly once, precedence constraints guarantee that each customer is picked up

before being dropped off, and coupling constraints require that the same vehicle

must visit the pickup and delivery locations.

21

Solomon and Desrosiers (1988) survey solution techniques for solving a

myriad of classes of routing problems with time windows. Solomon and

Desrosiers (1988) specifically address the current exact and heuristic methods

used to solve the PDPTW, to include the dial-a-ride problem (DARP). Solomon

and Desrosiers (1988,2-4) also provide a mathematical formulation for the single

depot, homogeneous fleet, route length constrained PDPTW. The objective of

the formulation minimizes the sum of the total travel cost, the total penalty

associated with servicing customers too early or too late and the total penalty

associated with routes exceeding a given duration.

2.2.1 Exact Methods

Single vehicle Dial-A-Ride (DARP) systems do not exist in practice.

Nevertheless, single vehicle DARP procedures can be used as subroutines to

solve large scale multivehicle DARPs. The single vehicle DARP is a constrained

TSPTW with the vehicle capacity restrictions. Psaraftis (1980,1983) developed

the first exact backward and forward recursion dynamic programming algorithms

respectfully to exploit this structure while minimizing customer inconvenience.

To avoid imposing time window constraints at the origins and destinations,

Psaraftis used a maximum position shift with respect to the ordering of known

pickup and delivery times. Since both algorithms have 0(n23n) complexity,

22

where n is the number of requests, they can handle only a limited number of

customers and still be computationally viable.

Sexton and Bodin (1985a, b) also minimize customer inconvenience

when one-sided time windows are encountered. The algorithm applies Benders'

decomposition procedure to a mixed binary nonlinear formulation that solves the

routing and scheduling components individually. The scheduling component

turns out to be the dual of the maximum profit network flow problem and can be

solved quickly and optimally with a one-pass algorithm. This efficiency permits

the overall algorithm to be computationally tractable for problems of moderate

size.

Sexton and Choi (1986) also use a Benders' decomposition heuristic that

involves a two-phase routing and scheduling procedure. They use a space-time

heuristic procedure to generate an initial route. Benders' decomposition

procedure is used to generate an optimal solution to the scheduling subproblem.

The route is improved using a Lagrangian relaxation heuristic based on the

coefficients of the Benders' cut. Their objective is to minimize a linear

combination of total vehicle operating time and total customer penalty due to

missing any of the time windows. Computational experience suggests that this

algorithm is also efficient for problems of moderate size, say 17 or fewer loads.

23

Desrosiers, Dumas and Soumis (1986) present an optimal solution to the

single vehicle DARPTW using a forward dynamic programming approach that

significantly reduces the number of states generated. The objective is to find the

itinerary that minimizes the total distance traveled not the total time required to

service all customers. By minimizing the total distance traveled, riding time

within the vehicle or customer inconvenience is not considered. Algorithm

efficiency is improved by eliminating states that are incompatible with vehicle

capacity, precedence and time window constraints. Eight elimination criteria are

presented, discussed and illustrated in a closing simple example. Ninety-eight

problems with 5 to 40 requests generated from real world data are solved.

Dumas, Desrosiers and Soumis (1991) provide an optimal algorithm that

minimizes the total distance traveled. This algorithm uses a column generation

scheme with a constrained shortest path as a subproblem. The constrained

shortest path problem is solved using a forward dynamic programming

algorithm. The algorithm works well for problems with restrictive vehicle

capacity constraints. The algorithm is also touted as being capable of handling

multiple depots and heterogeneous vehicles. The algorithm was tested against

eight problems ranging from 19 to 55 customers, two problems being real-life

scenarios in Montreal. Computational results indicate that as the total

24

permissible route duration increases, so does the problem difficulty. Problems

with smaller time windows are easier to solve due to a lesser number of feasible

solutions and to solve a multiple depot problem requires that you solve a

subproblem for each depot.

2.2.2 Heuristic Methods.

The practical size that exact methods can handle is small. Heuristic

algorithms are required to solve larger, real-world size problems. Given the

difficulty of the Pickup and Delivery Problem and routing problems, many

heuristic algorithms do not seek global optimal solutions, but rather seek to

provide fast near-optimal solutions and are customized to model specific

situations. In general, heuristic algorithms reported in the literature consist of two

phases, route construction and route improvement. In the first phase, feasible

vehicle routes are generated for a problem instance. In the second phase, the

constructed routes are improved by simple procedures. However, very little

research has been extended to develop heuristic methods to solve the PDPTW.

Van der Bruggen, Lenstra and Schuur (1993) employ a two-phase local

search algorithm to determine near-optimal solutions for the single vehicle

PDPTW. The construction phase starts with an infeasible tour and reduces

infeasibility at each iteration by applying an objective function that penalizes the

25

violation of the restrictions. The infeasible solutions only violate time window

constraints, not the precedence and capacity constraints. To generate an initial

mildly infeasible solution that satisfies the precedence and capacity constraints,

the authors sort on the midpoints of the time window intervals. The construction

phase returns a feasible solution and the improvement phase continues to

minimize the objective of route duration. Both phases use a variable-depth

exchange procedure based on a lexicographic neighborhood search strategy and

an embedded arc-exchange algorithm using seven variants of arc-exchanges.

Global variables are used to track feasibility and profitability of arc-exchanges.

Updates are completed in constant time in conjunction with the lexicographic

search strategy. Their algorithm produced near optimal results in a reasonable

amount of computation time on real-life problems, with known optimal solutions,

originating from the city of Toronto.

Van der Bruggen et al. realized that their search should not be solely

confined to feasible regions within the state space. They also developed an

alternative algorithm based on a penalized simulated annealing algorithm that

provided the power to escape local optima by accepting inferior solutions and

traversing infeasible regions in the state space to find other local optima. Again,

26

the only constraints violated are the time window constraints. Higher quality

solutions were found but at a higher computational cost.

2.3 Reactive Tabu Search (RTS)

A robust search engine is required to determine near optimal solutions

in real time. This search strategy must also be able to traverse time window and

capacity unfeasible regions of the solution space. Once the search is in a feasible

solution basin, you want to "intensify" your search to approach the local

optimum solution. When the search has exhausted your search and are getting

too many repeated solutions, you need to be able to alter your search trajectory to

diversify your search into another region of the solution space and escape the

current solution basin. Reactive tabu search (RTS) meets all these requirements

and has proven to be most effective in solving this class of combinatorial

optimization problems (Glover, 1996).

2.3.1 Tabu Search Algorithms from the Literature

Tabu search (Glover 1989,1990a, 1990b) attempts to avoid becoming

trapped in local optima by exploiting memory and data structures to prevent

returning to a previously examined solution. The neighborhood structures

imposed enable the algorithm to efficiently develop other solutions from the

present solution. A subset of neighbors, the candidate list, is examined to

27

determine the best move available with respect to the objective function. The

algorithm transitions to the best of the neighbors that is not tabu. A neighbor

is tabu if it has an attribute that has appeared in a solution within a designated

number of previous iterations. A critical required input parameter is the tabu

length which indicates the prohibition period, the number of iterations within

which the designated solution cannot be revisited. Tabu search algorithms

incorporate aspiration criteria to allow a forbidden move to be accepted whenever

such a move acceptance is deemed appropriate. Other procedures can be

designed to encourage the algorithm to intensify or diversify the search. The

algorithm terminates when a designated number of iterations or a predetermined

amount of computation time is reached.

Despite the success of other algorithms, tabu search seems to be the

method having the widest application for the special class of combinatorial

optimization problems, vehicle routing problems. It is also the method having

the greatest potential for further success and refinement (LaPorte 1992 and

Glover 1996). Tabu search is the primary procedure used within this research. A

detailed analysis of tabu search applications for solving the VRPTW will now be

presented. A brief overview of VRP instances using tabu search will be explored

since tabu search has not been applied to the PDPTW.

28

Stewart, Kelley and Laguna (1993) use a cluster first, route second

approach for solving vehicle routing problems (VRP). Their algorithm

decomposes the problem, uses both tabu search and local improvement methods

as subroutines, and uses an innovative network (0,1) integer programming

structure to develop neighboring solutions. The objective considered minimizes

total travel time.

Stewart et al. decompose the VRP into two subproblems: a generalized

assignment problem (GAP) and a traveling salesman problem (TSP). They use

tabu search to solve the GAP subproblem and allocate customers to routes. The

GAP routes generated are always feasible with respect to the vehicle capacity

constraints. With customer assignment complete, the vehicle is routed by solving

the TSP. The best TSP solution found is used to generate the set of neighbor

solutions. Neighbors are generated by solving a network flow problem; a few

customers from their current routes are placed on new routes in an approximately

least cost fashion (Stewart, Kelley and Laguna 1993,11). These customers may

not be reassigned to their initial routes for the designated tabu duration. This

new assignment of customers to routes is used to generate new seed nodes for the

GAP subproblem.

TABUROUTE is a metaheuristic developed by Gendreau, Hertz and

29

LaPorte (1994) that must be tailored to the shape of the particular problem being

investigated. TABUROUTE does not try to maintain feasibility nor does it strive

to return to feasibility. Thus, the risk of being trapped at a local optima is greatly

reduced by this procedure and you do not need a feasible starting solution.

Feasibility is encouraged by applying penalty terms in the objective function to

minimize total travel time. The two penalty terms, used for violating vehicle

capacity and route duration constraints, are dynamically updated within the

algorithm's execution based upon the recent history of feasible solutions.

Gendreau et al. track the best known feasible solution and the best solution

regardless of feasibility. This is incorporated in the PDPTW approach described

later.

Osman (1993) presents an alternative approach for solving the VRP. His

route set formulation concentrates on minimizing the total cost of all routes. A

solution is defined as the set S = {R„ ..., R,,} where R, is the set of customers

assigned to routey. Osman uses search neighborhoods that either add customers

to routes or "swap" customers between routes, via the "^.-interchange" (Osman,

1993,425). The author develops four algorithms: two local search procedures, a

tabu search algorithm and a simulated annealing algorithm. All algorithms use

the ^-interchange search neighborhoods. The cost of the move is computed

using a 2-opt procedure in conjunction with the inter-route swaps.

30

The simulated annealing algorithm is a probabilistic heuristic enabling the

search to escape a local optimum to traverse into other regions and cross

infeasible regions of the solution space. The local search algorithms use various

combinations of X neighborhoods and one of two move acceptance strategies;

choosing to accept either the first improving neighbor or the best improving

neighbor. The author concludes, "tabu search schemes ... outperform the SA

[simulated annealing] algorithm in solution quality and computation time. Tabu

search results are also more robust than SA" (Osman 1993,443). Additionally,

Battiti (1995,4) reports, "the often cited asymptotic convergence results of SA

are unfortunately irrelevant for the application of S A to optimization. In fact,

repeated local search, and even random search has better asymptotic

results...approximating the asymptotic behavior of SA arbitrarily closely requires

a number of transitions that for most problems is typically larger than the size of

the solution space...thus, the SA algorithm is clearly unsuited for solving

combinatorial optimization problems to optimality." Osman's algorithm does not

use a post-processing improvement routine nor does it accept infeasible solutions

during the search. Osman's results, when compared to those obtained by

Gendreau, Hertz and LaPorte (1994), offer no definitive insight as to which tabu

search routine is more effective.

Potvin et al. (1993) provide a tabu search heuristic for solving the

31

VRPTW. The authors develop two procedures that preserve the ordering of

customers and feasibility of the tour. Classical &-opt exchange heuristics are not

well adapted to problems with time windows because most exchanges do not

preserve the orientation of the routes. Since customers are typically sequenced

according to their time window's upper bound or midpoint, reversing some

portion of a route is likely to produce an infeasible solution.

The first exchange procedure is equivalent to the "swap" X-exchange

procedure developed by Osman. This "2-opt*" procedure, replaces two arcs from

the original solution with two new arcs forming two subtours. The "subtours are

connected together into a single tour by linking the last customer in each subtour"

(Potvin et al. 1993, 3). Hence, the new solution is likely to be feasible. The

2-opt* heuristic is useful when the two arcs to be replaced are from two different

routes. It is not useful otherwise. The 2-opt* is not useful if the initial route

construction heuristic produces an optimal clustering of the customers so

exchanges between routes is not needed.

The other heuristic considered is the Or-opt (Or, 1976) heuristic. Or-opt

considers a sequence of one, two and three adjacent customers in the solution. It

moves only small sequences of customers which are "close" from a spatial and

temporal point of view and inserts them at a new location while preserving the

orientation of the routes. This heuristic is suitable for both intra- and inter-route

32

exchanges.

Potvin et al. use a hybrid heuristic in their tabu search. The 2-opt*

heuristic is used during Phase 1 and considers new solutions that are very

different from the current one. The Or-opt moves during Phase 2 focus on finer

refinements. It also uses a route savings step within each tabu phase to try to

reduce the number of vehicles used.

The route savings algorithm is used because the authors hierarchically

base the quality of their search "first on the number of routes, and then, on a total

route time" (Potvin et al. 1993, 6). A tabu length of five iterations is used for the

prohibition period before being permitted to return to a prior solution. The

difficulty with this algorithm is that the search only considers feasible moves. It

is not clear how feasibility is verified or what the algorithm does if no feasible

moves are available. Solomon's (1987) time-space insertion algorithm is used to

generate a starting feasible solution. The authors test the heuristic against the

3-opt procedure on several random generated problems and Solomon's

benchmark problems. Their hybrid heuristic outperformed the 3-opt procedure

on almost all the test data sets.

Garcia, Potvin and Rousseau (1994) implement the Potvin et al. (1993)

tabu search algorithm in a parallel processing environment. The master

processor controls the tabu search. The "slaves" are used to simultaneously

33

explore different neighborhoods of the current solution. The master receives best

move information from each slave and is able to make several modifications at

once to the current solution.

Semet and Taillard (1993) tackle a real world VRPTW application that

incorporates several practical constraints using tabu search. The problem

involves 45 stores in Switzerland which place between 70 to 90 orders daily to be

filled from a central depot. In addition to the delivery location, requests indicate

delivery restrictions that might apply to that location. For example, each truck

and trailer has both volume and weight limitations and not all stores can

accept trailer deliveries.

The tabu search algorithm removes an order from a route and determines

the best place to insert the order in all the other routes. The route ordering is

refined using a 2-opt procedure. TS finds the best "allowed" move and

transitions to the solution. Next, the algorithm computes the optimal assignment

of vehicles to the new routes that have been formed.

In addition to using a random tabu list size, the authors experimented with

two types of tabu list attributes. The first tabu attribute permits an order removed

from a route to be returned to that route after the assigned tabu length. The

second tabu attribute, developed specifically for this application, extends the tabu

34

length prohibition of the first attribute to any order from the same store of the

route that just lost an order.

The delivery schedules obtained were superior to those previously used

by the shipping facility. The authors report that the best combination of

parameters is to use the second tabu attribute applied for 10,000 iterations. The

paper demonstrates the ease of implementing tabu search for a practical

application and tackles some interesting modeling issues.

Rochat and Semet (1994) apply tabu search to another real world

VRPTW application involving the transportation of pet food and flour. The

transportation costs represent a large percentage of the total cost of making and

delivering the goods. Federal laws severely penalize excess route duration and

excess weight in distribution of goods. This problem introduces unique

modeling issues and innovative solution techniques.

The problem addressed by Rochat and Semet (1994) considers a wide

variety of customers - local farmers to retailers and wholesalers - with varying

demands and different resupply schedules. Deliveries to be made the following

day are known in advance. Deliveries must satisfy the two time window

demands for each customer to associate the times customers are available to

receive goods. It appears that these windows are large. The customers are

35

served by a heterogeneous fleet of vehicles from a central depot. Solutions help

determine what vehicles can service what area. Rochat and Semet also consider

the breaks the drivers must take as required by Swiss federal law. The breaks are

modeled as fictitious customers with a prescribed time window and

corresponding service time. The demand associated with each dummy

customer is zero. Finally, the total duration of each route must not be greater than

10 hours, 15 minutes.

The key concept in the paper is how the authors handle accessibility. Not

all customers can be serviced by all types of vehicles. The authors first solve a

VRP restricted to the accessibility-constrained customers and generate partial

"compact" or clustered routes (Rochat and Semet, 1994, 1236). The second

phase inserts customers that are not constrained by type of vehicle.

Rochat and Semet use tabu search to improve the solution. The solution

space is the set of routes serving the whole set of customers while satisfying the

accessibility constraints. All three constraint sets - carrying capacity, duration of

routes and time windows - are relaxed. The authors use a weighted squared

lateness penalty term for time window violations along with weighted penalty

terms for route length and vehicle capacity violations. The objective function

sums the penalty terms with the total distance traveled. The penalty terms are

36

dynamically updated based in the history of the search. The authors allow for

infeasible solutions but only consider feasible solutions as a best solution. A

move consists of removing a customer from one route and placing it in another.

Once the move is made, the 2-opt routine is used to improve the routes. Because

the problem is relatively small, the entire neighborhood of the solution is

examined.

Rochat and Semet employ a reactive tabu search strategy. The tabu list

length changes dynamically during the execution of the algorithm. If the

objective function decreases by decreasing the infeasibilities, the tabu list length

is decreased. This intensifies the local search. If the objective function increases,

the tabu list length is likewise increased. The authors also employ an

intensification strategy that examines a subset of routes that are spatially close.

During this phase, new routes can be created if vehicles are available.

Rochat and Semet test their procedure on the actual problem data. Their

results are encouraging and show how their procedure minimizes the

infeasibilities that are already present in the routes presently used by the

companies.

Taillard et al. (1996) attempt to minimize the total distance traveled from

a single depot by a homogeneous fleet of vehicles to service a set of customers

37

with time window constraints. The time window constraints are soft which

implies that the customer service at a location can commence after the time

window's upper bound. The scheduling horizon constraint must still be met.

2-opt and 3-opt edge exchange heuristics are briefly discussed as methods

used to improve vehicle routing solutions. Taillard et al. propose a generalized

edge exchange heuristic called the "cross" exchange which is exploited within a

tabu search heuristic for the VRPTW. Orientation of the routes is preserved by a

cross exchange. Plus, this provides an easy mechanism to swap segments of

routes that are close from a spatial and/or temporal viewpoint.

Their algorithm constructs 20 different initial solutions. Routes are built

using Solomon's insertion heuristic and improved using tabu search. Results are

stored in adaptive memory. As the search progresses, routes stored in adaptive

memory are used to generate new starting solutions for tabu search in a manner

reminiscent of the recombination or crossover operator of genetic algorithms.

To reduce computation time and intensify the search in specific regions of

the state space, each initial solution is partitioned into disjoint subsets of routes,

each subset being processed by a different tabu search. Improvements are made

on each subproblem and then combined to form a new current solution. The

decomposition changes from one iteration to the next. The general problem

38

solving methodology can be easily parallelized to speed up the computations.

For example, many different staring solutions can be constructed from the

adaptive memory and assigned to different tabu search processes running in

parallel. Their algorithm is outlined below (Taillard et al. 1996,13).

1. Construct 20 different solutions with Solomon's insertion heuristic.
Apply the tabu search heuristic to each solution and store the results in
adaptive memory.

2. While the stopping criterion is not met, do:
a. Construct an initial solution from the routes found in the

adaptive memory and set this solution as the current solution.

b. For/iterations do:

(1) decompose the current solution into disjoint subsets of
routes.

(2) apply tabu search on each subset of routes.
(3) reconstruct a complete solution by merging the new

routes found by the tabu search processes and set this
solution as the new current solution.

c. Store the routes of the current solution in the adaptive memory.

3. Apply a postoptimization procedure to each individual route of the
best solution.

This problem-solving methodology produced many best "known"

solutions on Solomon's test set and appears to be fairly robust among the

different classes of problems in Solomon's test set.

39

2.3.2 The Reactive Tabu Search (RTS) Heuristic

The conceptual format developed by Battiti and Tecchiolli (1994) for the

reactive tabu search heuristic will be utilized in this research. RTS starts with a

deterministic initial tour and uses deterministic, not probabilistic, escape routines.

RTS incorporates the basic parameters and memory structures of classical tabu

search. RTS differs from tabu search in that it dynamically adjusts the search

parameters based on the quality of the search path. Parameter tuning is performed

while the algorithm runs and monitors its past behavior. The quality of the

search is determined by the number of iterations occurring since the last time a

particular solution has been visited. High quality solution paths seldom revisit,

or "cycle", to the same solution. If a solution is repeated within a designated

number of algorithm steps or "cycle length", RTS increases the tabu length

search parameter in order to discourage further repetitions. If numerous, high

quality solutions are being identified, RTS intensifies the search in that solution

subspace to determine the best solution in that locale. When too many solutions

are repeated too often, the search is assumed to be trapped in a local attractor

basin. RTS provides a diversification strategy that allows the search to climb out

of the basin into other regions of the solution space. The outline of the RTS

algorithm follows.

40

1. The search moves to a neighbor solution based on the one of the three
neighborhood search schemes.

2. The algorithm determines if the solution has been visited before.

a. If the solution has been visited within the designated cycle
length, the tabu length is increased by the suitable
multiplicative factor.

b. If the solution has never been visited, it is added to the solution
list, and if the search conditions warrant, the tabu length is
decreased by a suitable multiplicative factor.

3. If all candidate neighbors are tabu and none meet aspiration criteria,
then the algorithm escapes to the neighbor with the smallest move
value regardless of its tabu status, and the tabu length is decreased.
This occurs when the current solution has a very small number of
permissible moves.

Battiti and Tecchiolli (1994) suggest the conditions leading to a decrease

in tabu length in step 2b, above. Whenever a solution is revisited in fewer steps

than the designated maximum cycle length, the algorithm computes a moving

average of the cycle length. If the number of iterations without changing the tabu

length is greater than the moving average, then the tabu length is decreased by

the multiplicative factor (Carlton 1995,97-98). Barnes and Carlton (1995) and

Carlton (1995) have successfully employed the RTS approach to solve VRPTW.

41

Chapter 3

Detailed Problem Description

The pickup and delivery problem with time windows (PDPTW) is a

specific case of the PCRPTW. The PDPTW constructs optimal routes to satisfy

transportation requests, each requiring both pickup and delivery under capacity,

time window, precedence and coupling constraints. An unlimited number of

homogeneous vehicles housed at one depot are available. Each transportation

request requires picking up material at a predetermined location during a

prescribed time window and delivering the material to a specific destination

during a time window. Loading and unloading times are incurred at each vehicle

stop. The PDPTW incorporates clearly defined "pairwise" precedence

relationships. Each pickup location is joined to one and only one delivery

location.

Other characteristics of the problem investigated in this research will be

described in this chapter. Section 3.1 discusses which type of transportation

request problem will be investigated. Section 3.2 overviews the various type of

objectives used in vehicle routing problems. Section 3.3 lists the constraint sets

that must be satisfied by the PDPTW. Section 3.4 covers the assumptions,

notation and definitions used in the research.

42

3.1 The Advanced Request Problem

A static, or advanced request, problem is completely specified before a

solution is required. This corresponds to routine information required for a

system which requires customers to request service long enough in advance so

that vehicles may be completely routed before departing the depot. No further

requests for service are accepted after the vehicles are dispatched. The dynamic,

or immediate request, problem permits requests for service to occur after the

vehicles are dispatched. This research investigates the static scenario.

3.2 Objectives

There are a variety of objective functions applicable to time windows

constrained routing problems. Often two or more objectives will be addressed in

hierarchical fashion.

Minimize Number of Vehicles.

The purchase cost of new vehicles and/or the leasing of additional

vehicles may be considerable. In the public sector, adding more vehicles to an

existing fleet could necessitate fare or product price increases which in turn

reduces the ridership or consumer spending. The Armed Services, moreover,

must request funding from Congress to acquire additional transportation assets.

The necessary approval process can be very rigorous and time consuming. Each

proposal is scrutinized by subcommittees which require detailed justification for

43

the expenditures.

Minimize Route Length.

One measure of the operating costs of a transportation system is route

length. Minimizing route length contributes to minimizing fuel and maintenance

costs and driver pay. Route length is usually measured in terms of the physical

distance traveled or total time required.

Maximize Customer Satisfaction.

When providing transportation service to people, it is important to

consider their satisfaction with the quality of service. Customer satisfaction may

be measured in a variety of ways, and different individuals may value different

characteristics. For example, customers often seek to minimize total travel time,

the time from when the request is made (or the desired pickup time) to the

moment the individual is actually dropped off. Deviation from desired pick up

and delivery times may also be important. When evacuating casualties, customer

inconvenience is measured by the number of patients that must remain overnight

at staging facilities.

The objective used helps determine the type of search neighborhood or

neighborhoods that should be used. This research will concentrate solely on

minimizing the total travel time.

44

3.3 Side Constraints

The PDPTW imposes constraints which must be enforced in the model.

These constraint sets are:

Time Windows

Time window constraints arise whenever a customer requires the service

to be performed within a certain time period. The time window depicts the

customer's earliest and latest required times for service to begin and end. This

research focuses on the time windows constrained routing problems for the

following reasons.

Time window constraints commonly occur in real life. Major retailers

desire receipt of their supplies during off-peak or after duty hours so their

laborers can offload the vehicles and restock the shelves in preparation for the

next business day. Time window constraints need to be modeled in this research

because of its practical application to military deployment and logistics and

maintenance service support.

The addition of time windows can increase the difficulty in finding

feasible solutions. However, it also can enhance the basic problem structure by

limiting the number of feasible solutions. Often, the more restrictive the time

windows, the easier it is to solve the problem to optimality. Larger time

windows tend to defeat exact approaches because of the huge number of feasible

45

solutions that must be evaluated and eliminated.

Time windows may be two-ended, specifying an early time and late time,

or one-ended, where one time is not specified (Psaraftis, 1986). Additionally,

time window constraints may be treated as either hard or soft constraints. Hard

time window constraints may never be violated with respect to either the earliest

or latest service time. For soft time window constraints, time windows may be

violated at either the earliest or latest service time or both depending on the

problem definition. Time windows violations may also be permitted if a suitable

penalty cost is imposed. The larger the penalty imposed for violating a soft time

windows constraint, the "harder" the time window constraint becomes. Most

often, the literature treats the early service time windows as soft constraints

allowing a vehicle to arrive at a customer before the early service time and wait

until the service window opens. In this instance, the tour completion time may

be penalized by the waiting times accrued at the corresponding customers. This

research treats early time window limits as soft constraints and allows early

arrival at the customers' locations.

Precedence Constraints

Precedence constraints arise whenever one activity or series of activities

must occur before beginning another activity or set of activities. Precedence

embodies the logical sequence of real life activities that occurs in a problem such

46

as a taxi cab first picking up its customer and, subsequently, delivering the

customer.

The addition of precedence constraints can make it easier to build a

feasible solution because of the restricted ordering that exists. This also enhances

the basic problem structure by limiting the number of feasible solutions.

Same Vehicle or Coupling Constraints

Often an organization will plan a series of activities that requires workers

to simultaneously support the community in a number of widely dispersed

locations. Constraints need to be imposed to ensure that the same vehicle that

picks up the supplies delivers those supplies to the designated customer.

Precedence and coupling constraints are "hard" constraints and will not be

violated at any iteration of the search procedure. Precedence and coupling are the

dominant constraints that motivated the selection of neighborhood search

strategies used to solve the PDPTW (see section 4.2).

Vehicle Capacity

Vehicles are limited by the amount of supplies that they can transport,

whether limited by the total weight of the items or the sheer bulk, or volume, of

the supplies, or, in some applications, both weight and volume limitations are

present.

47

Planning Horizon

The planning horizon is the time all vehicles are permitted to complete

their routes. For the VRPTW, a vehicle leaves the depot either füll, prepared to

deliver supplies, or empty, ready to receive supplies. The vehicle capacity can be

more limiting than the planning horizon in the VRPTW because the vehicle can

only haul so many supplies before it must return to the depot. In the PDPTW,

supplies are both received and delivered during the route. Supplies are being

either added or subtracted from the total weight or volume of supplies on the

supplies. With the amount of supplies transported by the vehicle fluctuating, the

planning horizon can be more restrictive than the capacity restrictions.

3.4 PDPTW Assumptions, Notation and Definitions

All parameters of the PDPTW are assumed to be known with certainty.

Each problem has a set P of customers requiring service, either a pickup, P+, or a

delivery, P~, such that \P\ = n, P+ u P~ = P and \P+1 = \P~ | = \ . The set of n

customers is indexed by subscripts i andy. Other input parameters required to

define a specific instance of the problem are travel times between all pairs of

locations, t,-,; the service time, s,; the demand, d,; the earliest service time, e,; and

latest service time, 1, for each of the customers. For algorithmic simplicity, if

there is a nonzero s„ it is added to all % for customer i. Thus, nonzero s, need not

be considered explicitly by the solution algorithm after their effects are accounted

48

for in the ty and 1,. An important point to note is that the travel times are not

symmetric for the PDPTW. The travel time, t(J, records the travel time to move

directly from customer i to customer j. If customery is the paired successor of

customer /, t,, will be set to a large value, M, to make it undesirable for the

algorithm to select this leg of the route. There are two other instances where the

travel time between locations will be set arbitrarily large. Vehicles leave the

depot empty and must travel to a supplier first, not a delivery location. The last

stop a vehicle will make is to unload the remaining supplies on the vehicle. All

vehicles are assumed to return to the depot empty. Travel times from the depot

to a delivery location and from the supplier returning to the depot will be set to

M. Travel times Xy are based on Euclidean distance and an average rate of travel.

All distances are assumed to satisfy the triangle inequality, unless otherwise

indicated.

In general, a precedence ordered subset (POS) reflects a known ordering

of a subset of customers to be serviced in the problem. If a customer i is the

supplier for delivery location, customer./', customer i must be visited before

customer./'. Customer i is a predecessor of/', and./' is a successor of/. However, /

does not necessarily have to be visited immediately before./'. This relation may

be further denoted by pred, = / and succ, =j. Note that the successor for customer

i or the predecessor for customer./' need not be unique (as explained below).

49

Every customer belongs to a single precedence ordered subset. The following

types of precedence ordered subsets exist and will be examined during this

research.

1. pairwise-?OS. This defines the unique ordering between a supplier
and its corresponding delivery used in the PDPTW. There are nil
subsets, or "node pairs", defined for each PDPTW instance.

2. serial-POS. This defines a known ordering that must exist between
three or more customers. For example, given three customers, say a, b
and c, the ordering a-b-c says that customer a must be serviced before
customer b who is serviced before customer c.

3. generalized-POS. This defines a partial ordering among three or more
customers. Examples of this POS occur where a single supplier
supports several delivery locations or several suppliers support a single
delivery location. The single supplier must be serviced first before
delivering the supplies to the customers in the first example. An
algorithm minimizing distance traveled will determine the order of the
deliveries serviced by that single supplier. The successor for the single
supplier is a list of its corresponding delivery locations.

The serial- and generalized-POSs are discussed in chapter 5.

Each problem has a set V of available vehicles, indexed by k, such that

| V\ - m, and each vehicle has a known capacity C. All vehicle nodes will be

modeled after the depot such that pred* = succ* = predo = succ0 = 0, dk = d0 = 0,

sk = s0 = 0, e* = e0 = 0, and \k = 10 (section 4.1.2). Since the vehicle nodes are

modeled after the depot, the travel times from customers to vehicle nodes are

Xtj =t,,0 for i e P~J e V andy > n (3.1a)

t,y =t(y fory' € P+, i € V and i > n (3.1b)

50

tij = M for i e P+,j e V andy > n (3.1 c)
and

tij = Mfor/' € P~,i e Fand i > n (3.Id)

It will be assumed that the number of vehicles required will not impose a

limitation on this research. For the PDPTW, the number of vehicles can be

initially set to nil, the number of transportation requests or pairwise relationships

that must be satisfied. N is the set of all modeled nodes which include all

customers, vehicles and the depot, \N\ = n + m +1.

A solution is represented by a vector indicating the order in which

customers are served by the unique vehicles to which they are assigned. The

solution "tour" is represented by the vector T:

T- {To,Ti,T2,...,Xn+m-l,'C„+m}. (3.2)

where x, identifies the customer or vehicle node in the rth position of the route.

By convention, the customer in position 0 and in position n + m is the depot

depicted as To = 0 and xn+m = n + m for all tours, T. The remaining customers

and vehicles may occupy any position from 1 to n + m -1, inclusive. Nodes

identified 1 through n are customer nodes. Nodes identified n+1 through n + m

are vehicle nodes. A locator array, locxt, is used to record the current position of

the nodes in the tour with IOCXQ = 0 and locx„+m =n + m for all tours, T. The

locator array is important to the search process because you can readily identify

the location of a customer without having to search through the tour vector. For

51

example, locx2 =17 immediately tells us that customer 2 is located in position 17

instead of searching through the vector Tto find out in = 2. Initially, Jis set to

the vector {0,1,2,..., n+m} before the initial tour is constructed and the search

is initiated.

Since waiting is allowed, define the arrival time, A„ departure time, D,

and waiting time, W„ at node i as follows:

Av=DXi_,+tXi_uXiforieN (3.3)

D, = max (At, e,) for i e P and Dt = 0 for i e V (3.4)

Wt = msx.(0,ei-Ai) = Di-Ai (3.5)

Note that Wj > 0 whenever a vehicle arrives at customer i prior to e,. However,

service cannot start prior to the early arrival time.

The early service time window constraints will be treated as "soft"

constraints allowing the vehicle to wait if it arrives before the early arrival time.

The late time window constraints are hard and must be satisfied in any feasible

tour. These constraints are represented:

A, < U VieN. (3.6)

If i identifies a vehicle node, equation (3.6) evaluates if the route is completed

during the normal duty day or the planning horizon. Satisfying this requirement

will determine if overtime is required for the drivers.

Vehicles investigated in this study have finite capacity. These constraints

52

must also be strictly satisfied to produce a feasible set of tours. The total load on

a vehicle at any time must be less than the vehicle capacity. The vehicle capacity

constraints are expressed:

load*<CV*e F. (3.7a)
where

load, =load,_i+d, for i e P and load* = 0 for k e V (3.7b)

A penalty structure totaling the amount of time windows and load

violations associated with each tour is provided below:

1. Sm totals the amount of time windows violations for the tour and is

computed by
n+m

Sm= Z max.(0,At-lt) (3-8)

where the expression A-t - /, > 0 indicates either that the vehicle arrived at

customer i after the late service time to service the customer or the vehicle

returned late to the depot.

2. Sw totals the amount of overload for a tour and is computed by

n+m
Sid = 2 max(0,load, - Q (3.9)

i=i

This information will be used for two reasons. First, the time windows and

overload violations, appropriately weighted, will be added to the objective

function to evaluate infeasible solutions. Additionally, the time windows and

overload violations will be used in the two-level open hashing structure to further

discriminate between tours (refer to section 4.3.3).

53

The dominant constraints that will be enforced at each iteration are the

precedence and coupling constraints. All tours discovered during the search, to

include infeasible tours, will be workable. In each route, the same vehicle that

picks up supplies will deliver them to their delivery site. The pickup site will be

visited prior to the delivery site. The precedence and coupling constraints that

must be satisfied are

locxi < locxsucci and Veht = VehSUCCi Vz e P+ (3.10a)

locxpredj ^ locxj and Vehpredj = Vehj V/' e P~ (3.10b)

where the notation Vehi indicates the vehicle to which customer i is assigned.

The total travel time is the sum of all inter-customer distances in the tour.

n+m-l
A tour's total travel time is given by £ tT. T/.. .This research adds the time

i=0

windows and capacity violations to the objective function weighted by an

appropriate value because the search methodologies used during this research

must traverse infeasible regions of the solution space. The penalty for time

windows, PEN™, is set equal to 1 to reflect the actual time that the tour violates

/,, The penalty for capacity violations, PENld, is set to 100 to correspond to the

fine that could be levied for carrying a load in excess of the vehicle's capacity.

The objective function is thus defined as

Z,(T) = T1 fT|,x,+1+PENnrxSr»'+PENwxSw. (3.11)
/=o

54

Chapter 4

The PDPTW Algorithm

4.1 The Input Data and Initial Tour

The following section discusses how Solomon's benchmark data for the

VRPTW was modified to generate data sets for the PDPTW. Two different route

construction algorithms were also used to generate starting tours for the PDPTW.

4.1.1 The Benchmark Data Sets

The Solomon problems (1987) have long existed as the benchmark data

set for VRPTW. Unfortunately, there are no clearly defined benchmark problems

available to test algorithms solving the pickup and delivery problem with time

windows. For this reason the Solomon problems, with appropriate modifications,

were used as the test bed for the research documented herein.

The Solomon problems used in this study are the rl, cl and rcl data sets,

having 12,9 and 8 problem instances, respectively. (For a complete listing of the

data sets modified, refer to appendix A.) The 29 data sets are written for three

different customer sizes; 25-, 50- and 100-customers. The short planning horizon

that characterizes these data sets further constrains the PDPTW by acting as a

capacity constraint and limiting the number of customers that can be serviced by

the same vehicle.

Problem set rl has radially dispersed, randomly distributed customer

55

locations. Problem set cl has clustered customer locations while problem set rcl

provides a mixture of radially dispersed and clustered customer locations.

Within all three data sets customers have randomly assigned time windows. An

individual problem has either 25%, 50%, 75% or 100% of its customers

assigned time windows. As the percentage of customers having time windows

increases, the number of feasible solutions encountered during the search

decreases and the time to complete a heuristic search procedure also tends to

decrease. Solomon (1987) provides a detailed discussion of the data sets

generation.

4.1.2 The Input Data Structure

The initial entry in the data tells how many suppliers and deliveries must

be visited. This is the number of customers, numcust, and will be an even

number to reflect the "pairwise" precedence relationship. The first two columns

of the data set provide the location of each customer consisting of an (x, y)

coordinate for each customer based on the distance measure used by the analyst.

This (x, v) coordinate is used to generate the time-distance matrix. Associated

with each customer is the corresponding time window \ep /,], service time, s, and

demand, dt. A positive demand in the third column indicates a supplier and how

many supplies, by weight or volume, that will be loaded on the vehicle. A

negative demand reflects a delivery being made. This indicates that the load

56

hauled by the vehicles will fluctuate depending on whether a pickup or delivery

is being made (refer to section 3.3). The service time in column five provides

how long it will take to off-load or on-load the supplies. The final two entries in

the row establish the precedence relationships that must be satisfied. The first of

the two entries, predh declares which customer serves as the predecessor to node

i. lipredi = 0, node i does not have a predecessor node. This indicates that node

i is itself the predecessor node in the paired precedence relationship. Thus, the

second entry, succif would be nonzero indicating which node is the successor to

node i.

The depot node data is placed in the first row. The planning horizon is

specified by the length of the depot time window and by design equals l0 since e0

is set to zero. The remainder of the entries for the depot node are set to zero, i.e.,

d0 = s0 =pred0 = succ0 = 0.

The format for the data follows (where n = numcust, the number of

customers).

n
x0 y0 d0 e0 l0 s0 pred0 succ0

x, yx dx ex /, 5, predx succx

xn yn dn en /„ sD predn succD

Carlton's (1995) RTS heuristic was run on Solomon's VRPTW

57

benchmark problems to generate the optimal or best found solution schedules

used for the PDPTW problem instances. The exact VRPTW solutions of

Desrosiers, Desrochers and Solomon (1992) and Kohl (1995) were used to

validate the results from Carlton's RTS heuristic. Given the tour schedules, the

VRPTW input data structure was modified for the PDPTW. Customers were

randomly paired within each route and the predecessor and successor

columns updated with the identification of the corresponding node pair. If an

odd number of customers was present on a route, the customer without a pair

was paired with a dummy node modeled after itself. The service time for the

original node is set to zero and the dummy node gains the service time. This

dummy node serves as the delivery node and successor to the original node

establishing a node pair. Appendix B provides an 25-customer example

illustrating how Solomon's data is modified to support the PDPTW structure.

The Solomon problems, with the modifications discussed above, were

used as the best bed for this research because there are no clearly defined

benchmark problems available to test algorithms solving the pickup and delivery

problem with time windows. The limitation in using these modified benchmark

problems is that the problem instances may not be globally representative of all

possible structures and may not possess the necessary rigor to fully test the

PDPTW algorithm.

58

4.1.3 The Optimal Solution vs Best Solution Found

Desrochers, Desrosiers and Solomon (1992) and Kohl (1995) were able to

find optimal solutions for several of the VRPTW benchmark problem instances.

However, many of the schedules outlining an optimal tour are unavailable.

Carlton (1995) used a reactive tabu search metaheuristic to solve the VRPTW

benchmark problems and found "nearly" optimal solutions in a comparatively

short amount of time. Carlton's VRPTW code was used to generate the

best/optimal tour that was used to provide the information to complete the

modified input data for the PDPTW. Specifically, the best feasible/optimal tour

found was used to determine which nodes would serve as predecessors and which

nodes would be successors.

The problem instances where only the best feasible solution was used

could potentially provide complications during the search process. The RTS

approach attempts to find a good feasible, but not optimal tour. These competing

solutions could force the search trajectory to miss locating either solution. Plus,

imposing the PDPTW data structure could make infeasible an unidentified

VRPTW optimal tour, since it might violate the new precedence and coupling

constraints. As a result, the optimal tour might not be discovered. Finally, as

discussed in the prior section, these modified data sets based on the best feasible

solution found may not be as broad or diverse as desired to provide the necessary

59

rigor to fully test the PDPTW algorithm.

The summary results available from Desrochers, Desrosiers and Solomon

(1992) and Kohl (1995) were used to identify the number of routes required for

the optimal tour. Carlton's RTS algorithm was used to identify either the optimal

tour or tours with an equivalent number of routes. For the 25- and 50-customer

problem instances, optimal tours with an equivalent number of routes were

discovered. Optimal tours with an equivalent number of routes were only found

for the clustered 100-customer problems. Carlton's code discovered tours with

20,18 and 16 routes while Kohl (1995) reported finding tours with 18,17 and 15

routes for three of the radially dispersed 100-customer problems - rlOl, rl02 and

rl05. These three problem instances were used for exploration. Infeasible tours

generated by the PDPTW algorithm could possibly have an equal number of

routes as the optimal tours indicated by Kohl.

4.1.4 Infeasible Initial Tour

Solomon (1987) analyzed and compared several tour building algorithms

for VPvPTW. All algorithms used 2-opt refining procedures to improve the

routes. His computational results revealed that a sequential time-space based

insertion (II) algorithm outperformed the other route construction heuristics for

the VRPTW by being the most stable in all problem environments (Solomon

1987,256-260).

60

The Solomon insertion heuristic builds tours sequentially. For each new

route, the unrouted customer farthest from the depot becomes the first customer

assigned to the route. The remaining unrouted customers are assigned a value

representing the minimum cost associated with inserting it into any feasible

position in the new route (Solomon 1987,257). The customer having the best

cost is inserted into the corresponding position in the new route associated with

that cost, provided the insertion is feasible. When no customer may be feasibly

inserted, a new route is started. The procedure continues until all customers are

feasibly placed.

Solomon's insertion heuristic is quick and effective and is used quite

frequently to build initial feasible routes for other neighborhood search

techniques (Carlton, 1995, 204 and Solomon, 1987). The procedure forms a

feasible tour using as many vehicles as necessary without regard to actual vehicle

availability. The main problem with this method is that the last unrouted

customers tend to be widely dispersed over the geographic area yielding routes of

poor quality.

Solomon's insertion heuristic places customers on routes based on their

location and satisfaction of time windows constraints. The insertion heuristic

does not account for precedence and coupling concerns. Therefore, in this work,

an additional one pass sweep is conducted to ensure that precedence and coupling

61

constraints are satisfied. The sweep uses the locator array, locxh coupled with

the Vehi portion of the node structure to determine where the other member of

the pairwise-POS is located and whether the pair is located on the same route,

respectively. If the pair is not located on the same route, the tour is adjusted so

that the pair is on the same route. If precedence is not satisfied, the successor is

repositioned on the route immediately following the successor.

Conducting this one pass sweep ensures that precedence and coupling

constraints are satisfied. However, the sweep does not consider satisfying time

windows or capacity requirements. The tours that are created may be infeasible

due to time windows violations.

4.1.5 Feasible Initial Tour with a Vehicle Reduction Phase

Previous studies have explored whether it is more advantageous to start

with an initial feasible tour rather than some arbitrary starting tour. Results of

these studies have indicated that it is desirable to start with an initial feasible tour

(Potvin, et al., 1993, Thangiah, 1993, Kontoravdis and Bard, 1993 and Carlton,

1995). One way to create an initial feasible tour for the PDPTW would be to

place each pickup location and its delivery location on the same route. If this

initial tour proves to be infeasible, then there is no feasible solution satisfying all

the constraints. Creating this initial feasible tour also serves as a check to ensure

that the modified input data generated is accurate.

62

The only shortcoming using this initial feasible tour is that extra "up

front" effort must be expended using an appropriate neighborhood search strategy

to quickly conduct vehicle reduction. Using this initial tour, followed by a

"vehicle reduction phase" is suitable as long as the problems investigated are

relatively small, 50 customers or less. (Results using this initial tour are provided

in appendix E.)

4.1.6 Feasible Initial Tour without the Vehicle Reduction Phase

Early investigations showed that a composite method was required to

generate an initial feasible tour that did not require a vehicle reduction phase. To

accomplish this, a sequential time-space pairwise-POS insertion algorithm was

created. This routine inserts the first pairwise-POS on the first route. The

routine then attempts to feasibly place the next pairwise-POS on that route. If

such exists, the routine finds the feasible insert location for the pairwise-POS that

adds the least amount to the overall tour travel time. If there is no feasible

placement, a new route is created. The routine continues until all customers are

scheduled. The procedure provided a feasible initial tour for all the test bed

problems.

4.2 Neighborhood Search Strategies

Three search neighborhoods are hierarchically employed after the initial

solution is constructed.

63

4.2.1 Single Precedence Ordered Subset Insertion (SPI)

The first neighborhood search scheme attempts to place a single

precedence ordered subset (POS) on another route in the tour. For the PDPTW,

a POS refers to a supplier and its corresponding delivery location, a

pairwise-POS. SPI searches a route for a predecessor/supply node. Once the

predecessor node is identified, the search attempts to feasibly place this node on

all the other routes. To feasibly place this node on another route, the predecessor

node must only satisfy time window and capacity constraints for incorporation on

the alternate route. For every feasible position found for the predecessor node,

the successor node is inserted after the predecessor node in ALL subsequent

locations remaining on the route, from immediately following the predecessor to

just prior to the depot node to finish the route. The successor node is located

using the locator array, locxt.. The change to the objective function is computed

for each location (using the move_delta function as discussed in appendix C).

The majority of the locations where the successor is inserted will result in

infeasible tours. However, this procedure does allow infeasible tours to be

1 Feasible insertion

u u w u u vm...m ^PPA
Check all subsequent insertions.

Figure 1 An Example of Single Precedence Ordered Subset Insertion

64

investigated.

An annotated description of the SPI neighborhood search is provided

below.

1. Increment neighborhood counter, -H-spicount;

2. Initialize neighborhood search parameters;

3. Search for a predecessor/supply node on the first (subsequent) route.

4. Attempt to feasibly insert, satisfying load and time windows
constraints, the predecessor node / as early as possible on an alternate
route.1

5. If a feasible insertion position is found,

a. create a working tour.

b. insert predecessor node on alternate route in the working tour.

c. compute partial tour length change.

6. Insert successor node, tour[/].succ, in all positions subsequent to the
predecessor node on the alternate route.

a. create a second working tour based on the working tour in 5 a.

b. compute remaining tour length change based on insertion of
the successor node.

c. compute time windows and load capacity violations and adjust
the tour length.

i • If inserting the predecessor before the last node on the route, the route
identifying vehicle node, check to see if the/?a/rvt>we-POS can be inserted.
Checking to insert the predecessor/supply node before the vehicle/depot node is
not permitted. It is one of the inadmissible positions.

65

d. record results based on the (in)feasibility of the neighbor tour.

7. If at the end of the tour, stop the search and update the results; else,
return to step 2 and search for the next predecessor/supply node.

8. Update tour results.

a. If one or more feasible moves are found, move to best such
move.

b. If there is no improving pair to insert,

(1) decrement the neighborhood counter, —spicount.

(2) reinitialize neighborhood search parameters.

(3) go to swap_pairs. This is the escape routine.

c. Check to see if the neighbor move selected eliminates a route.

(1) During the first half of the search, accept the move if
the neighbor move is a feasible tour.

(2) During the second half of the search, infeasible route
reduction moves are accepted.

9. Update tabu list and tour positions. Allow no "return" moves for
tabu_length iterations.

a. Use the predecessor node position only for recording tabu
moves.

b. Allow no "repeat" moves for tabu_length iterations to avoid
cycling.

10. Compute the tour hashing value.

Of all the move neighborhoods, SPI commonly provides the greatest

66

reduction in objective function. SPI also establishes an upper bound on the

cardinality, or number, of the respective routes of the tour. The SPI search

neighborhood is the only neighborhood search strategy of the three search

strategies that will perform a reduction in the number of routes. However,

eliminating routes will be permitted only if the new solution is feasible during the

first half of the overall search process. The first half of the search attempts to

find the best feasible tour that satisfies all constraints. During the second half of

the search, any move eliminating routes will be accepted, even the neighbor

move is infeasible.

When the modified Solomon's II sequential space-time insertion

algorithm generates an infeasible initial tour, SPI quickly eliminates the time

windows and capacity violations created by the one-pass sweep. However, SPI is

an 0(«3) search neighborhood and is the most expensive search mechanism used

by the algorithm.

4.2.2 Swapping Pairs Between Routes

The second search neighborhood scheme swaps POSs between routes.

This search neighborhood is often required to change the makeup of routes.

During the search process, the SPI search routine could very possibly be "locked"

out of any potential moves. This happens when there are no locations to feasibly

place any of the predecessor nodes on any of the other routes. This situation is

67

extremely common when time windows are tight. This situation does not

guarantee that the optimal solution has been found. It just means that you are

locked out of using SPI to find feasible alternate neighbor tours in the solution

space. By swapping pairwise-POSs between routes, you overcome the barrier

and alter the search trajectory to find new areas of the feasible solution space.

This neighborhood search is also used for diversification when the search

trajectory is confined to a limited portion of the solution space with no clear

periodicity. Too many solutions are being revisited during a prescribed number

of iterations. This is a chaotic attractor basin. A predetermined series of

swapping pairwise-POS between routes determined by the size of the problem

is executed. This drastically alters the complexion of the route. The tabu search

parameters are reinitialized and the search continues from this new solution in a

different region of the solution space.

This search neighborhood swaps a POS pair for another POS pair on

another route. No attempt is made to find the best place to insert the successors

after the predecessors are swapped. This type of fine tuning is relegated to the

Tour [i] .succ

O O <D O O Om...m O (D O O
t t

Figure 2 The Swap Pairs Neighborhood Search

68

Tour [I] .succ

neighborhood described in section 4.2.3. An annotated description of the swap

pairs neighborhood search procedure is provided below.

1. Increment neighborhood counter, -H-swapcount.

2. Initialize neighborhood search parameters;

3. Search for a predecessor/supply node on the first (subsequent) route.

4. Search for a predecessor node on an alternate route later in the tour.

5. If swapping the predecessor nodes does not violate tabu length
restrictions,

a. create a working tour.

b. swap the pairwise-POSs between the routes.

c. compute move evaluation.

d. compute time windows and load capacity violations and adjust
the tour length.

e. record results based on the (in)feasibility of the neighbor tour.

6. If at the end of the tour, stop the search and update the results; else,
return to step 2 and search for the next predecessor/supply node.

7. Update tour results.

a. If one or more feasible moves are found, move to the best such
move.

b. If there are no improving pairs to swap, use the escape criteria
and select the best move found.

8. Update tabu list and tour positions. Allow no "return" moves for
tabu_length iterations.

69

a. Use the predecessor node position only for recording tabu
moves.

b. Allow no "repeat" moves for tabu_length iterations to avoid
cycling.

9. Compute the tour hashing value.

This search often selects a new tour that is infeasible. This is allowable

because the purpose of this search is to alter the makeup of the routes and the

search is not constrained to feasible tours. Time window or capacity infeasible

neighbor tours are critical to the search process and could provide a viable tour

having significantly lower objective values than the optimum. If the new tour is

infeasible, the next search neighborhood will attempt to make minor

modifications within the routes to see if the nodes on the respective routes can be

feasibly arranged or arranged so as to further minimize the time windows and

capacity violations.

4.2.3 Within Route Insertion (WRI)

The third search neighborhood is used to fine tune travel time within

routes by moving individual locations earlier or later in their respective routes.

The other two search neighborhoods can generate infeasible tours that violate

time windows or capacity. This search neighborhood will attempt to reorder the

customers to further minimize or negate the time windows violations and to make

70

Later n
x>o®ooooo

Earlier Tour[i].succ

• ••

Tour [I] .pred . , ,
| Later | | ^

...~ ooooo®oo
Earlier

Figure 3 The WRI Neighborhood Search

minor improvements in the objective function. This search neighborhood is

especially required when large time windows are prevalent. Numerous feasible

solutions are available when large time windows are present. Altering the

customer arrangement within the routes will explore other possible orderings to

determine the best possible order for the routes.

WRI limits the search to within routes instead of across routes. Moving

individual locations across routes requires too much additional computational

effort to track precedence and coupling violations.

The WRI search is further restricted by strong time window infeasibility

and precedence considerations. Strong time window infeasibility occurs when

71

one customer cannot be feasibly serviced before or after another customer. For

example, customer i is said to be strongly time window infeasible with respect to

customer.;' if e, + t(J > 1,. Precedence constraints are enforced ensuring that all

solutions are workable and make sense; suppliers occur before their

corresponding delivery and both customers are placed on the same route for all

pairwise-?OSs in the problem. The following annotated description looks for

improvement within the respective routes only.

1. Increment neighborhood counter, ++wricount;

2. Initialize neighborhood search parameters;

3. Conduct LATER within route insertions.

a. create a working tour.

b. attempt to insert a customer node later in the route if it does
not violate precedence or strong time window feasibility.

c. compute tour length change using movejdelta.

d. compute time windows and load capacity violations and adjust
the tour length.

e. record results based on the viability of the neighbor tour.

f. if at the end of the route, the vehicle node, move to subsequent
routes and proceed with 3.a. above.

g. if at the end of the tour, continue with step 4.

4. Conduct EARLIER within route insertions.

72

a. create a working tour.

b. attempt to insert a customer node earlier in the route if it does
not violate precedence or strong time window feasibility.

c. compute tour length change using move_delta.

d. compute time windows and load capacity violations and adjust
the tour length.

e. record results based on the viability of the neighbor tour.

f. if at the end of the route, the vehicle node, move to subsequent
routes and proceed with 4.a. above.

g. if at the end of the tour, continue with step 5.

5. If there are no escape moves (there is a strong possibility given tight
time windows),

a. decrement the neighborhood counter, --wricount.

b. go to the SPI neighborhood search routine.

6. If one or more feasible moves are found, move to the best such move.

7. If all moves are tabu, but an escape move exists, move to it and
decrease the tabu length.

8. Update tabu list and tour positions. Allow no return and repeat moves
for tabu_length iterations.

9. Compute the tour hashing value.

4.2.4 Limiting the Search

It is very simple to form a feasible solution for the PDPTW as shown

earlier if, indeed, a feasible solution exists (see section 4.1.5). However, the set

73

of feasible solutions for the PDPTW is not necessarily a connected space with

respect to a given neighborhood definition. The more constraints that are present

in the problem, the more likely that feasible solutions will be isolated from one

another. If the feasible solution space is not connected, an algorithm only

investigating feasible solutions can find an optimal tour only if the initial tour

resides in a subspace that contains one or more optimal tours. Van der Bruggen,

Lenstra and Schuur (1993) show that there is no guarantee that any reasonable

neighborhood structure ensures the connectivity of feasible solutions for the

single vehicle PDPTW. The example they constructed demonstrates

disconnected feasibility regions in the general case for any reasonable

neighborhood (Van der Bruggen et al. 1993, 308-309). Their research also

revealed that as the time windows narrow, there is an increased likelihood of

having a number of feasible solutions isolated from one another with regard to

any practical move structure.

It is very simple to form precedence viable solutions for the PDPTW, as

explained earlier. Precedence viable solutions are "workable" in that the required

ordering of picking up the supplies prior to making the delivery is satisfied plus

the correct supplies will be on the vehicle that makes the delivery. The SPI

search neighborhood is capable of eliminating routes in the tour. The swap pairs

neighborhood search is critical to altering the makeup of the routes. Finally,

74

WRI provides the requisite fine tuning by reordering customers within routes.

The neighborhood search routines do not consider tours that violate precedence

and coupling constraints. While not proven, empirical results obtained during

this research supports the conjecture that the set of precedence viable solutions is

a connected subset based on the three neighborhood searches.

4.2.5 Time Windows Reduction

A common characteristic of optimal algorithms in solving vehicle routing

problems is their heavy reliance on time window relationships to amply trim the

dynamic programming (DP) state-space and to restrict the number of feasible

solutions so that the DP approaches are computationally tractable. The larger the

time window width, the greater the number of feasible solutions that must be

explored. The effectiveness of any DP based algorithm is limited because the

size of the resulting state space grows exponentially as the width of the time

windows increases. Serious consideration has been given to develop methods to

reduce time window width.

Desrochers, Desrosiers and Solomon (1992) outline four techniques that

are applied sequentially and iteratively to reduce the width of time windows.

Kontoravdis and Bard (1992) employ a similar approach to reduce time windows

based on the travel time from the depot. These procedures were developed for

vehicle routing problems that did not include precedence relationships, i.e., no

75

predefined ordering existing between the nodes. The time windows reduction

process is drastically streamlined for PDPTW because of the precedence

relationships that exist.

Dumas, Desrosiers and Soumis (1986) develop the obvious method for

reducing time windows for PDPTW. "A preliminary step in the determination of

the admissible arcs is the shrinking of the time windows associated with the

pickup and delivery nodes. This is done by reducing the upper bounds of the

time windows so that for / = 1,..., n, the partial paths n + i [successor]-» 2« + 1

[depot] and / [predecessor]-» n + i [successor]-» In +1 [depot] are admissible

for all values Tj e [e,-,/,-] and T„+i e [e„+t, /„+,]" (Dumas, Desrosiers and Soumis,

1986,10). The upper and lower bounds for the time windows are successively

defined by

/„+,- := min {/„+,-, hn+\ - ti.2n+i (4.2)
and

/,■ := min {/,-, /„+,- - *,-,„+,• for i = 1,..., n. (4.3)

e, := max {e,-, e0 + *o,i (4.4)
and

e„+i := max {en+i, et + tiMi} (4.5)

Equation (4.2) states that the upper bound on the time window for

delivery/successor nodes could possibly be further constrained by the time it

takes to make that final delivery and return to the depot. Similarly, equation

(4.4) indicates that the lower bound for supply/predecessor nodes could further

76

be limited by the time it takes to travel from the depot to the supply point.

Equations (4.3) and (4.5) reveal that the late departure time for the supplier and

the corresponding early arrival time for the delivery are constrained only by the

pairwise-POS ordering - that the supply node i must occur before its

corresponding delivery node n+i is serviced where n refers to the number of

"ordered" pairs defined in the PDPTW.

4.2.6 Inadmissible Arcs

Numerous researchers have developed methods to eliminate arcs from the

network structure, thereby eliminating the need to consider arcs that lead to

obvious infeasibilities. The predefined ordering that exists for PDPTW coupled

with the time windows and load constraints eliminates the following

inadmissible arcs.

a. Arcs from the depot to delivery locations and from suppliers
immediately returning to the depot are eliminated because of violating
precedence.

b. Arcs from the delivery node to its corresponding supplier are
eliminated because of violating precedence.

c. Arc (i, j) is eliminated if e,- + si + ty > lj, strong time windows
infeasibility.

d. Arcs (i,j), (J, i), (i, sucCj), (swcc,, succj) and (succj, sued) are eliminated
if vehicle capacity is violated, i.e., where dt + dj >C, where nodes i and
j are supply nodes.

77

4.3 Two-Level Open Hashing Structure

A key issue to the effective implementation of RTS is the accurate

identification of previously visited solutions. The two-level hashing scheme

proposed by Horowitz, Sahni and Freed, 1993, and implemented by Carlton,

1995, will be used in this research. The two-level hashing structure has proven to

be effective in minimizing collisions, where two nonidentical solutions are

incorrectly determined to be duplicate solutions. In addition, the two-level

hashing scheme efficiently stores solutions. It would not be efficient to store the

solution tour vector for every solution visited during the search, and it definitely

would not be computationally effective to compare the current tour with every

previously visited tour position-by-position to determine if the current tour has

been visited.

The two-level hashing scheme is implemented as follows.

1. Once a tour is accepted as the incumbent tour, compute

a. the hashing function, f(T) = Z(T)mod k, based on the objective
function value, Z(T), where k is a large prime number. This is
the first-level hashing.

b. the tour hashing value, which transforms the tour solution
n

vector into an unsigned integer. thv(T) = E ^(T/XTZ+I), where

T, is the index of the customer assigned to tour position /. T(0
is a randomly generated integer in the range (1,131,072) for
each modeled node.

2. Compare the associated penalty for time windows, P,w(T), and thv(T)

78

for the incumbent tour to the values of tours linked to hash table
element f(T).

3. If both values P-rw(T) and thv(T) match the stored values, then the tour
is being revisited.

4. If the tour is revisited, compute the cycle length and change the tabu
length, if required.

5. If the tour is visited for the first time, add the tour to the hashing table
and reduce the tabu length if required (Carlton 1995,102-103).

For a complete overview on implementing the two-level open hashing structure

proposed by Horowitz, Sahni and Freed (1993), refer to Carlton (1995, 99-103)

and Carlton and Barnes (1996,237-239) article on hashing.

4.4 The Tabu Criteria, Tabu Length and Data Structures

Short-term memory functions are used to determine whether a solution

with a characteristic attribute has been visited before. If the algorithm discerns

that a candidate solution possesses attributes of a recently visited solution within

a specified tabu length, the move is disallowed and the next candidate move is

entertained. The selection of the tabu attribute, the associated data structure and

the tabu length are vital design features which contribute to the efficiency and

success of the search. Whenever a move yields an objective function value lower

than previously discovered, the aspiration criterion is invoked and the tabu status

of such a move is overridden.

The algorithm uses an (N+ 1) x (N + 1) array, tabu_Iist[i, j], to record

79

and enforce the tabu status. The row index identifies the customer,

x,- = 0,..., n + m where x, is the identification number of the customer assigned to

tour position i. The column index records the tour position. The array elements

store the iteration number after which the customer can return to that position in

the tour. Customer T, might move from its current position by being chosen as

an allowable candidate move or it might move indirectly corresponding to

repositioning of other customers in the tour. The tabu restriction must consider

both attributes to define a move's prohibition period. Failure to account for both

conditions may cause "indirect cycling" among two or more customers. For a

further discussion and example of indirect cycling, refer to Carlton (1995,

117-118). Thus, when the search determines that customer x,- is to move from

position i to position^, the value k + tabujength, where k is the current iteration

count, is stored in two locations. Setting tabu_list[x,j] makes all "repeat"

moves tabu for tabujength iterations. A repeat move is any subsequent move of

node T, into positiony, the position into which node x,- is moving. The value k +

tabujength is also stored in location tabu_list[x,,i] making all "return" moves

tabu for the prohibition period. A return move would permit node x, to reenter

the position is just vacated. A modification is made for the WRI search

neighborhood when the move is to an adjacent later location. Since a return

move is based on node index x,+i, the value k + tabujength is stored in array

80

location tabu_list[x,+i, / + 1].

The algorithm performs a simple check to determine if a candidate move

satisfies both tabu conditions. If the current iteration number k < tabu_list[x, j],

then the proposed move of customer T, from position i to positiony is not

allowed unless it leads to a globally superior objective function value.

Two of the search neighborhoods move/wwrvvwe-POSs between routes.

It is only necessary to update the tabu_list[i, j] array for the predecessor nodes in

the pairwise-POS. Possible insertion positions of the successor node using SPI

are based solely on finding a feasible insertion point for the predecessor.

Similarly, the swap pairs neighborhood search finds predecessor nodes on

differing routes and evaluates the possibility of swapping the pairs between the

routes. The purpose behind the swap pairs neighborhood search routine is to

alter the makeup of the route through diversification or overcome a wall in the

landscape when the SPI routine is locked out of any moves. Setting

tabu_list[x,-,./] = tabu_list[T ,-,*'] = tabu_Iist[T/, i] = tabu_list[T7,y] =

k + tabujength, where i and./ are the positions of the predecessor nodes,

accomplishes the purpose.

The final tabu criteria to consider is the tabu length. Computational

results indicate that the tabu length should be based on the size of the problem.

Thus, the initial tabu length is set to

81

tabujength = max(30, number ofpairwise-POSs) (4.6)

This initial value gives consistently good results in conjunction with the

aforementioned tabu attributes.

4.5 The Algorithms

Six algorithms were explored during this research; BUILD, BUILDc,

NEW, NEWc, INIT and INITc. The algorithms differ in their initial tours and

the methods used to modify the candidate list during the SPI search

neighborhood. The BUILD, BUILDc and INITc algorithms were used for initial

investigations and served as a foundation for future algorithms.

BUILD and BUILDc algorithms use the most basic feasible tour - placing

eachpairwise-POS, the supplier along with its corresponding delivery location,

on the same unique route - as the initial tour (refer to section 4.1.5). This is

followed by a "vehicle reduction phase" to eliminate the majority of excess

vehicles initially used. The first few iterations, equivalent to the number of

pairwise-POSs in the problem, use the SPI neighborhood search scheme to

reduce the number of routes.

The INIT and INITc algorithms use Solomon's insertion heuristic along

with an additional one pass sweep to correct precedence and coupling violations

to generate an infeasible initial tour (refer to section 4.1.4). The majority of the

vehicle reduction has been completed in creating the initial tour. Therefore, extra

82

up-front effort performing successive SPI iterations to reduce the number of

routes is not necessary. Some SPI iterations are required to clean up the tour and

remove the time window infeasibilities created by the one pass sweep.

The NEW and NEWc algorithms expend more effort to generate a route

reduced feasible initial tour. The NEW and NEWc algorithms use a sequential

time-space pairwise-POS insertion algorithm to generate a feasible starting tour

with a significantly reduced number of routes in the starting tour when compared

to the BUILD algorithms starting feasible tour (refer to section 4.1.6).

The SPI search neighborhood (section 4.2.3) used in the BUILD, INIT

and NEW algorithms examines all possible pairwise-POS insertions in the

neighborhood and accepts the most improving non-tabu move. The BUILDc,

INITc and NEWc algorithms accelerate the SPI search process by accepting the

first improving non-tabu move discovered. The remainder of the algorithms

proceed in similar fashion. A annotated description of the algorithms will be

presented later in this section.

The multineighborhood strategic search methodology specifies the

scheme for alternating between search neighborhoods to generate a quality search

path. All six algorithms use the same hierarchical form of multineighborhood

strategic search methodology to direct the search. This hierarchical form is based

83

on average time window length (atwl). The atwl is computed after time windows

reduction. Atwl provides an indication as to the number of potential feasible

solutions that may exist in the solution space.

aflv/=£'=l/'7' (4-7) numcust v /

In this study, using the test bed problems, it was observed that if atwl is

greater than 25% of the route duration length, numerous feasible solutions exist

and minor adjustments within routes are required to fine tune, or intensify, the

search and possibly discover better tours. After performing one iteration of the

SPI neighborhood search, perform numcust/10 successive iterations using the

within route insertion (see section 4.2.3) neighborhood search.

If atwl is less than 25% of the route duration length, more strong time

windows infeasibilities exist limiting the number of candidate moves for within

route insertions. After performing one iteration of the SPI neighborhood search,

perform numcust/25 successive iterations of WRI. The "tightness" of the

problem's time windows will also determine if the WRI and/or SPI neighborhood

searches get "locked out" of having any allowable neighbor moves. If this

happens while using WRI, the search escapes to the SPI neighborhood search

routine. If the SPI scheme does not have a neighbor move to transition to, the

search escapes to the swap pairs neighborhood. If the swap pairs neighborhood

encounters this phenomena, the routine invokes the escape criteria and transitions

84

to the best move available. This establishes the hierarchy for moving between

search neighborhoods.

Local minimum points are attractors of the search trajectory generated by

deterministic local search. One of the problems that must be solved is how to

continue the search beyond the local minimum and how to avoid the confinement

of the search trajectory. Confinements occur because the search trajectory tends

to be biased towards tours with low cost function values, and, therefore, also

towards the abandoned local minimum. The fact that the search trajectory

remains close to the minimum for some iterations is clearly a desired effect in the

hypothesis that better points are preferentially located in the neighborhood of

good suboptimal points rather than among randomly extracted points.

Simple confinements can be cycles, an endless repetition of a sequence of

solutions during the search. Confinements can be more complex trajectories with

no clear periodicity that restricts the search to a limited portion of the solution

space. This is a chaotic attractor basin. If too many solutions are revisited during

a prescribed number of iterations, the search is confined to an attractor basin

(Battiti 1995,10-11).

All six algorithms provide an escape strategy if the search gets trapped in

a chaotic attractor basin. If too many solutions are revisited too often during a

prescribed number of iterations, escape by performing successive iterations of the

85

swap pairs search neighborhood to drastically alter the makeup of the tour and

move the search into a different region of the solution space. Empirical studies

indicated that the number of successive iterations had to be based on the size of

the problem and the number of routes in the tour. Setting the number of

iterations too low did not sufficiently alter the makeup of the route to escape the

attraction of the basin. Use too many iterations and the search never recovers

from the amount of infeasibilities generated. The number of successive swap

pairs iterations performed is

min(number of vehicles used, numcust/10). (4.8)

If the search gets caught again in an attractor basin, restart from the best

tour found until that point and reinitialize the search parameters. This will alter

the search trajectory and move the search into a different region of the solution

space. The other place to restart the search is at a different starting point. If the

search gets caught a fourth time in an attractor basin, it may not be beneficial to

restart at the best tour again. Stop the current search and revisit the initial tour.

Deterministically perform several successive iterations of SPI on the initial tour

to create a new starting tour. Reset the search parameters and begin the search

from this new starting point.

The algorithms also use the restart mechanism when few, if any, repeat

solutions have been identified during the first half of the search. Empirical

86

results for the algorithms used in this research indicate that, in general, the best

solutions are often found early in the search process. The results also reveal that

if the optimal tour was missed by the initial search trajectory, soon after

restarting the search at the best tour, the optimal tour was found For example,

the optimal tours were found for the 25-customer problems nrclOl, using

INIT, and nrl05, using NEWc, after restarting the search at the best tour midway

through the search.

The number of iterations used in the search can affect the search process

for the problem instances where the optimal tour is not found until later in the

search. The smaller the number of iterations required for the search, the

increased likelihood that halfway through the search, the search will restart at the

best tour. If the optimal tour had not been found prior to restarting the search,

the optimal tour may be found just several iterations after restarting the search

with the different search trajectory. For example, two problem instances, ncl02

and ncl04, were solved using the BUILD algorithm for different numbers of

iterations. The results are provided in Table 1. The optimal tour was found for

problem ncl02 44 iterations after restarting the search at the best tour for the first

two iteration counts. For iteration counts of 300 and higher, the optimal tour was

found before restarting the search. The optimal tour was also found slightly

earlier in the search than when 200 iterations were used. For problem ncl04, the

87

Problem # of Allowed
Iterations

Iterations to
Optimal Tour

ncl02

100 94

200 144

300-750 125

ncl04

100 54

200 104

400 204

500-750 211

Table 1 - Effect of iterations on the search - Restart at \ Iterations Allowed

optimal tour was discovered just 4 iterations after restarting the search until the

iteration count reached 500 iterations. These results indicate that some

preliminary runs using smaller iteration counts could prove beneficial.

There exist a couple of concerns with the BUILD routine. The first

centers on the tabu structure. The problem is best explained by use of the

following example. The symbol o is used to represent the vehicle nodes. The

first D used in the example refers to the depot node in position zero. The

numbers refer to customer nodes and also refers to the customer's initial position

in the tour. Given the initial tour where each single precedence ordered subset

(POS) is placed on individual route:

D 1 2 D 4 5 D 7 8 D 10 11 D 13 14 D ...

Performing one iteration of SPI yields the following tour

88

D 1 2 D 4 5 D D 10 11 D 13 14 7 8 D ...

SPI moves node pair (7, 8) to route 5 eliminating the third route. The tabu list for

SPI only records the position of the predecessor.

tabu_list[7,7] =tabu_list[7,13] = 1 + tabujength.

Recall that the first tabu listing restricts return moves. The second aids in

prohibiting cycling. Performing the second iteration of SPI (during the initial

vehicle reduction phase) yields

D 1 2D D D 4 5 10 11 D 13 14 7 8 D ...
Node pair (4,5) is moved to route 4 eliminating the second route.

tabu_list[4,4] =tabu_list[4,6] = 2 + tabujength.

The third iteration of SPI moves node pair (1,2) to route 5 eliminating the

original route 1.

D D D D 4 5 10 11 D 13 14 1 2 7 8 D ...

tabu_list[l, 1] =tabu_list[l, 11] = 3 + tabujength.

The optimal solution is reachable by moving node pair (7, 8) to route 3. t

D D D D 4 5 10 7 8 11 D 13 14 1 2 D ...

This move will not be permitted because tabu_list[7,7] = 1 + tabujength The

search will move off and perform numerous iterations before you overcome the

"absolute" tabujength requirement and are permitted to return to a prior

solution. By the time the tabu restriction is lifted, the existing tour will be

89

drastically skewed and far away from the optimal tour in the solution space.

It is possible to "recover" and return to find the optimal solution later on

in the search. Above is just a missed opportunity. The additional precedence and

coupling constraints coupled with the neighborhood search strategies often

encounter the optimal, or best, solution early in the search. The remainder of the

search looks for precedence viable tours that are infeasible by violating time

windows and capacity constraints. However, the structure of some problems will

not return you to the basin containing the optimal solution. Suppose that

D D D D 4 5 10 7 8 11 D 13 14 1 2 D ...

is the best tour. The optimal solution can be obtained by forcing a pure restart

after some predetermined number of iterations. Reinitializing , the SPI

neighborhood search will yield the optimal solution.

Another approach would be to "clean up the tour" to solve the absolute

tabu restriction criteria. Again, given the initial tour where a single POS is

placed on a route:

D 1 2 D 4 5 D 7 8 D 10 11 D 13 14 D ...

Performing one iteration of SPI moves node pair (7, 8) to route 5 eliminating the

third route.

D 1 2 D 4 5 D D 10 11 D 13 14 7 8 D ...

tabu_list[7,7] = tabu_list[7,13] = 1 + tabujength. If we "cleaned up" this tour by

90

moving the vehicle node (which is used to identify the number of the route in the

structure node representation for the tour) to the end of the tour with the other

extraneous vehicle nodes, the tour would become

D12D45D1011D13 1478DD ...

The tabulist would have to be adjusted to read

tabu_list[7,7] = tabu_list[l, 12] = 1 + tabujength

to account for the change in the geometry. The locator array would have to be

updated to reflect this change. The second iteration of SPI now yields

D 1 2 D D 4 5 10 11 D 13 14 7 8 D D ...

by moving node pair (4,5) to route 4 eliminating the second route. After the

clean-up we have

D 1 2 D 4 5 10 11 D 13 14 7 8 D D D ...

The tabu_list would have to be further adjusted to reflect

tabu_list[7,6] = tabu_list[7,11] = 1 + tabujength and

tabu_list[4,4] = 2 + tabujength.

Notice that this latter tabu listing is really redundant because node 4 starts and

finishes in position 4. Hence, this restriction could be effectively eliminated.

Node pair (4, 5) is free to move anywhere in the tour.

The third iteration of SPI moves node pair (1,2) to route 5 eliminating the

original route 1. The tour becomes

91

D 4 5 10 11 D 13 14 1 2 7 8 D D D D ...

after the vehicle node associated with route 1 is moved to the end of the tour.

Because route 1 was eliminated, all current tabu listings will have to be

decremented by one in the second, or y, column. This records the initial positions

for the (precedence) nodes as if the vehicle nodes for routes eliminated were not

even included in the tour. Thus,

tabu_list[7,5] = tabu_list[7,10] = 1 + tabujength and

tabu_list[l, 1] = tabu_list[l, 8] = 3 + tabujength.

The optimal solution is now reachable by moving node pair (7, 8) to route 3.

D 4 5 10 7 8 11 D 13 14 1 2 D D D D ...

This move to position 4 is permissible since there is no tabu restriction.

This example problem reveals two critical concerns. The first comes

from using the most basic feasible tour - placing eachpairwise-VOS, the supplier

along with its corresponding delivery location, on the same unique route - as the

initial torn. This scenario increases the likelihood of encountering the tabu

restriction difficulty. Coupled with this is the need to attempt to eliminate the

"excess" nodes created by the BUILD algorithm. The example shows how the

presence of these extra vehicle nodes could affect the tabu restrictions. Plus,

carrying around the extra nodes during the search process bogs down the

computation time because of the unnecessary comparisons being performed.

92

This causes the search process to become computationally intractable when the

problem instances get large. This problem is overcome by using the INIT and

NEW algorithms.

The number of vehicles, numvehs, modeled in a problem for all six

algorithms is initially set to the number ofpairwise-POSs in the problem. Thus,

the total number of nodes, nnodes, is

nnodes = numcust + numvehs +1 (4.9)

One additional vehicle is added to this total to provide a way of stopping the

search at the end of the tour. When you get to the last position in the tour, say

position /, the last vehicle node in the tour will have the same identification

number as its position in the tour, i.e.,

T,= Vehi = i (4.10)

One of the benefits of using the INIT and NEW algorithms is that the excess

vehicle nodes could be trimmed after creating the initial tour with very little

effort. The total number of nodes is trimmed by setting the number of vehicles

equal to the number of routes in the initial tour created by the INIT or NEW

algorithms, plus one additional vehicle node to mark the end of the tour.

The algorithm is described below.

0. Initialize: structures, vectors and search parameters.

1. Input problem instance.

93

a. Number of iterations = niters.

b. Compute the time/distance matrix.

c. Model vehicle nodes after the depot node.

2. Compute the time windows reduction.

3. Construct the initial tour.
- the most basic feasible tour for the BUILD algorithms.
- the infeasible tour for the INIT algorithms.
- the reduced route feasible tour for the NEW algorithms.

a. Generate the initial schedule.

b. Compute the initial tour cost = travel time + waiting time.
c. Compute the initial hashing values - f(T) and thv(T).

4. While k < niters do

a. Look for incumbent tour in the hashing structure.

(1) If found, update the iteration when incumbent tour was
found, increase the tabu length, if applicable.

(2) If not found, add tour to the hashing structure, decrease
the tabu length, if applicable.

b Vehicle Reduction Phase (for BUILD only).

(1) Perform «POS successive iterations of SPI where n is
the number of pairwise-VOSs.

(2) Store ending solution for future reference as the initial
tour.

c. Conduct a hierarchical neighborhood search scheme.

(1) Perform one (1) iteration of SPI followed by fine

94

tuning using WRI. The number of iterations of WRI is
determined by the average time window length, atwl

(2) If SPI causes reduction in the number of routes,
andiO;<2f2

(a) permit move if the neighbor route is feasible.

(b) disallow move if the neighbor route is
infeasible; go to swap pairs.

(c) else if k > SifI, allow reduction in routes.

(3) If WRI gets "locked out" of performing any move
because of strong time windows infeasibilities and
precedence constraints, go to SPI.

(4) If SPI gets "locked out" of performing any transition,
go to swap pairs.

(5) Move to the non-tabu neighbor according to the
appropriate decision criteria. If all tours are tabu, move
to the neighbor with the smallest move value and
reduce the tabu length.

d. If you get caught in a chaotic attractor basin, diversify by
performing successive swap pairs iterations equivalent to
min(number of vehicles used, numcust/10), equation (4.8).

e. If you get caught again in a chaotic attractor basin, restart at the
best tour found by the search up to that point. Reinitialize
search parameters.

f. Update the search parameters.

(1) Incumbent tour schedule.

(2) Incumbent tour hashing value.

(3) Retain the best feasible solution found and the tour

95

with the smallest tour cost regardless of feasibility,

h. k = k+l.

5. Output results.

The algorithm is coded in ANSI standard C programming language. The

time to complete the search starts with the computation of time windows

reduction and ends prior to recording the results.

4.6 Computational Results

This section presents the computational results of the three competitive

reactive tabu search algorithms - INIT, NEW and NEWc - in solving the

modified Solomon's (1987) problem set. Appendix A describes this set of

problems in detail. This section compares the computational results of three RTS

algorithms to the optimal VRPTW approaches of Desrochers, Desrosiers and

Solomon (1992) and Kohl (1995) and the VRPTW reactive tabu search approach

ofCarlton(1995).

All three algorithms are coded in C and the runs were conducted on an

IBM RISC 6000 workstation. The code was compiled with the standard C

compiler using the -03 optimization flag. The RTS algorithm was run using the

following parameter settings.

1. PEN-rw = 1.0. This is the multiplicative factor used to weight the total
amount of infeasibility with respect to time windows. Setting PEN™
to 1 results in the penalty term equaling the total lateness in the tour.

96

2. PENld = 100.0. This is the multiplicative factor used to weight the
total amount of infeasiblity with respect to load capacity violations.

3. tabujength = max(30, number of pairwise-POSs).

4. The tabujength increase factor is set to 1.2. This is the multiplicative
factor by which the tabujength is increased if a solution is revisited
within the designated cycle length.

5. The tabujength decrease factor is set to 0.9. This is the multiplicative
factor by which the tabujength is decreased, if search conditions
warrant it.

6. Cycle length = 50. If a solution is revisited within 50 iterations, the
tabujength is increased by the multiplicative factor of 1.2.

7. Hash table array dimension = 1009. This is large prime number
comparable to most of the objective values anticipated.

The exact algorithm by Desrochers, Desrosiers and Solomon (1992, 350)

is coded in FORTRAN and executed on a SUN SPARC 1 workstation. Kohl

used a HP 9000-735 computer and coded the algorithm in PASCAL. The HP

9000-735 is over eight times faster than the SUN SPARC 1 workstation used by

Desrochers, Desrosiers and Solomon (Kohl and Madsen 1995, 30). The VRPTW

RTS metaheuristic by Carlton (1995) is coded in C and compiled on an IBM

RISC 6000 workstation. Despite the differences in computing platforms and

codes, the NEW tables in this section demonstrate the significant decrease in

computation time the NEW tabu search algorithm achieves over the other

algorithms. This decrease occurs despite the added data structure required for the

97

modified PDPTW data sets and the additional information that must be

processed resulting from this added structure. This improvement is achieved at a

very small decrease in solution quality. Additionally, infeasible tours with

reduced objective function values are discovered for some of the problem

instances.

4.6.1 25-customer problems

Tables 2,4 and 6 record the results for the ncl, nrl and nrcl

25-customer problem instances. Column one identifies the problem instance.

Columns two and three display the minimum travel time and the number of

vehicles required to achieve the travel time. Columns four and five reflect the

number of iterations and the seconds of computation time required to locate the

RTS solution, respectively. Column six shows the deviation of the RTS travel

time from the optimum expressed as percentage. Columns seven through nine

show the optimal results obtained by Carlton's (1995,210-211) VRPTW code.

The best infeasible tours found are presented in tables 3, 5 and 7.

Column one identifies the problem instance. Columns two and three display the

reduced total travel time and the time windows penalty associated with the

infeasible tour, respectively. Column four shows the percent improvement over

the optimum solution. 750 iterations were used for the runs except where noted.

98

Problem Vehs Iter to Time to % Optim Iter to Comp
Instance Zt(T) Used Best Best Dev Zt(T) Best Time

nclOl 2,441.3 3 6 0.18 0 2,441.3 2 0.07
ncl02 2,440.3 3 650 13.1 0 2,440.3 82: 0.67
ncl03 2,440.3 3 11 0.55 0 2,440.3 671 5.93
ncl04 2,436.9 3 126 4.37 0 2,436.9 1,038 9.92
ncl05 2,441.3 3 29 0.38 0 2,441.3 3 0.07
ncl06 2,441.3 3 6 0.21 0 2,441.3 2 0.06
ncl07 2,441.3 3 13 0.49 0 2,441.3 3 0.07
ncl08 2,441.3 3 16 0.64 0 2,441.3 5 0.09
ncl09 2,441.3 3 20 0.84 0 2,441.3 6 0.1
nrlOl 867.1 8 13 1.03 0 867.1 54 0.4
nrl02 806.8 7 6 0.33 1.22 797.1 1,039 8.23
nrl03 704.6 6 633 14.16 0 704.6 963 8.2
nrl04 666.9 4 17 0.9 0 666.9 195 1.81
nrl05 780.5 6 22 0.52 0 780.5 56 0.43
nrl06 715.4 5 10 0.4 0 715.4 962 7.51
nrl07 674.3 4 79 1.26 0 674.3 194 1.69
nrl08 647.3 4 10 0.54 0 647.3 67 0.66
nrl09 691.3 5 8 0.35 0 691.3 722 5.88
nrllO 694.1 5 14 0.44 0 694.1 919 8.27
nrlll 678.8 4 45 0.82 0 678.8 181 1.59
nrll2 648.2 4 18 0.72 0.81 643 63 0.73
nrclOl 711.1 4 7 0.12 0 711.1 1,077 7.26
nrcl02 601.8 3 24 0.33 0 601.8 1,994 16.53
nrcl03 582.8 3 3 0.19 0 582.8 890 7.38
nrcl04 556.6 3 29 0.75 0 556.6 659 5.55
nrcl05 661.3 4 375 3.77 0 661.3 180 1.31

nrcl06 595.5 3 50 0.64 0 595.5 39 0.31

nrcl07 548.3 3 7 0.19 0 548.3 1,412 12.37

nrcl08 544.5 3
Avg =

30 0.7 0 544.5
Avg =

63
466

0.67
78 1.69 0.07 3.92

Table 2 - INIT results, 25-customers

On average, 78 iterations were required to find the best solution in a time

99

of 1.69 seconds for the INIT algorithm. This represents a savings of 83.3% for

number of iterations and 57% in time to find the best solution when compared to

the optimal VRPTW solutions of Carlton. The overall difference in solution

quality from the optima was 0.07%. 27 of 29 optimal solutions were matched.

Table 3 displays two solutions that violated the time windows constraints in total

amounts less than 20 time units and possessed lower objective values.

Problem Vehs %
Instance Zt(T) Penalty^ Used Dev
nrclOl
nrcl05

683.4
603.4

10.2
11.3

4
3

-3.9
-8.76

Table 3 - INIT infeasible results, 25-customers

Problem Vehs Iter to Time to % Optim Iter to Comp
Instance Zt(T) Used Best Best Dev Zt(T) Best Time
nclOl 2,441.3 3 0 0.01 0 2,441.3 2 0.07
ncl02 2,440.3 3 4 0.12 0 2,440.3 82 0.67
ncl03 2,440.3 3 192 4.38 0 2,440.3 671 5.93
ncl04 2,436.9 3 21 0.69 0 2,436.9 1,038 9.92
ncl05 2,441.3 3 0 0.01 0 2,441.3 3 0.07
ncl06 2,441.3 3 0 0.01 0 2,441.3 2 0.06
ncl07 2,441.3 3 0 0.02 0 2,441.3 3 0.07
ncl08 2,441.3 3 0 0.06 0 2,441.3 5 0.09
ncl09 2,441.3 3 0 0.1 0 2,441.3 6 0.1
nrlOl 867.1 8 5 0.16 0 867.1 54 0.4

nrl02 806.8 7 13 0.23 1.22 797.1 1,039 8.23

nrl03 704.6 5 21 0.37 0 704.6 963 8.2

nrl04 666.9 4 10 0.33 0 666.9 195 1.81

nrl05 780.5 6 23 0.36 0 780.5 56 0.43

100

nrl06 715.4 5
nrl07 674.3 4
nrl08 647.3 4
nrl09 691.3 5
nrllO 694.1 5
nrlll 678.8 4
nrll2 643 4
nrclOl 711.1 4
nrcl02 601.8 3
nrcl03 582.8 3
nrcl04 556.6 3
nrcl05 661.3 4
nrcl06 595.5 3
nrcl07 548.3 3
nrcl08 544.5 3

Avg

8 0.14 0
0 0.03 0
56 1.44 0

236 2.28 0
21 0.31 0
18 0.28 0

110 2.86 0
371 1.02 0

0 0.02 0
4 0.1 0
0 0.05 0
7 0.1 0
17 0.14 0
10 0.1 0
16 0.3 0
40 0.55 0.04

715.4 962 7.51
674.3 194 1.69
647.3 67 0.66
691.3 722 5.88
694.1 919 8.27
678.8 181 1.59
643 63 0.73

711.1 1,077 7.26
601.8 1,994 16.53
582.8 890 7.38
556.6 659 5.55
661.3 180 1.31
595.5 39 0.31
548.3 1,412 12.37
544.5 63 0.67
Avg = 466 3.92

Table 4 - NEW results, 25-customers

On average, 40 iterations were required to find the best solution in a time of 0.55

seconds for the NEW algorithm. This represents a savings of 91.4% for number

of iterations and 85.9% in time to find the best solution when compared to the

optimal VRPTW solutions of Carlton. The overall difference in solution quality

from the optima was 0.04%. 28 of 29 optimal solutions were matched. Table 5

displays four solutions that violated the time windows constraints in total

amounts less than 20 time units and possessed lower objective values.

101

Vehs %

Problem Zt(T) Penalty^ Used Dev
nrl02 765.5 2.4 6 -3.96

nrl03 696 15.8 5 -2.45

nrllO 688 0.1 5 -0.88

nrclOl 708.3 0.7 4 -0.39

nrcl05 596.5 17.3 3 -9.8

Table 5 - NEW infeasible results, 25-customers

Problem Vehs Iterto Time to % Optim Iter to Comp
Instance Zt(T) Used Best Best Dev Zt(T) Best Time

nclOl 2,441.3 3 0 0.01 0 2,441.3 2 0.07

ncl02 2,440.3 3 4 0.08 0 2,440.3 82 0.67

ncl03 2,445.4 3 3 0.1 0.21 2,440.3 671 5.93

ncl04 2,436.9 3 21 0.61 0 2,436.9 1,038 9.92

ncl05 2,441.3 3 0 0.01 0 2,441.3 3 0.07

ncl06 2,441.3 3 0 0.01 0 2,441.3 2 0.06

ncl07 2,441.3 3 0 0.02 0 2,441.3 3 0.07

ncl08 2,441.3 3 0 0.05 0 2,441.3 5 0.09

ncl09 2,441.3 3 0 0.1 0 2,441.3 6 0.1

nrlOl 867.1 8 5 0.16 0 867.1 54 0.4

nrl02 820.6 7 12 0.18 2.95 797.1 1,039 8.23

nrl03 704.6 5 30 0.27 0 704.6 963 8.2

nrl04 666.9 4 10 0.28 0 666.9 195 1.81

nrl05 780.5 6 390 1.66 0 780.5 56 0.43

nrl06 715.4 5 8 0.1 0 715.4 962 7.51

nrl07 674.3 4 0 0.03 0 674.3 194 1.69

nrl08 647.3 4 196 2.77 0 647.3 67 0.66

nrl09 691.3 5 25 0.29 0 691.3 722 5.88

nrllO 694.1 5 645 6.36 0 694.1 919 8.27

nrlll 678.8 4 20 0.17 0 678.8 181 1.59

nrll2 643 4 233 3.32 0 643 63 0.73

nrclOl 711.1 4 160 0.41 0 711.1 1,077 7.26

nrcl02 601.8 3 0 0.01 0 601.8 1,994 16.53

102

nrcl03 582.8 3
nrcl04 556.6 3
nrcl05 661.3 4
nrcl06 595.5 3
nrcl07 548.3 3
nrcl08 544.5 3

Avg

4 0.11 0
0 0.05 0

60 0.4 0
17 0.07 0
10 0.1 0
16 0.2 0
64 0.62 0.11

582.8 890 7.38
556.6 659 5.55
661.3 180 1.31
595.5 39 0.31
548.3 1,412 12.37
544.5 63 0.67
Avg = 466 3.92

Table 6 - NEWc results, 25-customers

On average, 64 iterations were required to find the best solution in a time of 0.62

seconds for the NEWc algorithm. This represents a savings of 86.3% for number

of iterations and 84.2% in time to find the best solution when compared to the

optimal VRPTW solutions of Carlton. The overall difference in solution quality

from the optima was 0.11%. 27 of 29 optimal solutions were matched. Table 7

displays three solutions that violated the time windows constraints in total

amounts less than 20 time units and possessed lower objective values.

Vehs %
Problem Z,(T) Penalty^ Used Dev

nrl03 696 15.8 5 -2.45
nrllO 688 0.1 5 -0.88
nrcl05 603.4 11.3 3 -8.76

Table 7- NEWc infeasible results, 25-customers

4.6.2 50-customer problems

Tables 8-19 record the overall results for problems rl, cl and rcl for the

50-customer problem instances for the INIT, NEW and NEWc algorithms.

103

Desrochers, Desrosiers and Solomon (1992, 351-352) claimed they were able to

solve 14 of the 29 problems to optimality. Carlton (1995,212-213) used their

results for comparison with his RTS heuristic solutions. Kohl (1995,179-188)

claimed that he was able to solve 27 of the 29 problems to optimality. However,

the optimal schedules for these solutions were not provided. For comparison

purposes, Carlton's VRPTW code was used to identify the optimal or a best tour

along with the corresponding schedule. This schedule was used to create the

PDPTW data. Results recorded in these tables follow the same format used for

the 25-customer problems except where noted. First, column three lists the

number of vehicles required by the PDPTW algorithms for the best tour found. If

this differs from the number of vehicles required for the optimal or best tour

result, the number of vehicles required is listed in the parentheses in column

three. Tables 8,12 and 16 display the results for the 15 50-customer problem for

the INIT, NEW and NEWc algorithms, respectively, where the optimal solution

schedules are known in detail. Tables 9,13 and 17 display the results for the

remaining 14 50-customer problems where the PDPTW input structure was

modeled against an inferior solution found by Carlton's VRPTW code. Columns

seven through nine in these tables show the results obtained by Carlton's RTS

heuristic VRPTW code. Tables 10,14 and 18 display the results for the

50-customer problems against the optimal results obtained by Kohl (1995,

104

210-211). Kohl was not able to identify the optimal solution for two problems,

rl08 and rl 12. Finally, the best infeasible tours found that reduce the objective

value are presented in tables 11,15 and 19. 750 iterations were used for the runs.

Problem Vehs Iterto Time % Zt(T) Iterto Comp
Instance Zt(T) 1 Used(#) Best to Best Dev by Kohl Best Time

nclOl 4,862.4 5 34 2.36 0 4,862.4 24 2.07

ncl02 4,861.4 5 307 307 0 4,861.4 38 14.89

ncl03 4,904.2 5 157 25.33 0.88 4,861.4 34 26.45

ncl04 4,864.7 5 355 83.07 0.19 4,855.6 53 153.56

ncl05 4,868.2 5 553 33.9 0.12 4,862.4 17 1.5

ncl06 4,862.4 5 28 3.11 0 4,862.4 19 1.34

ncl07 4,862.4 5 44 7.28 0 4,862.4 26 5.43

ncl08 4,862.4 5 359 46.04 0 4,862.4 23 3.53

ncl09 4,871.5 5 327 94.39 0.19 4,862.4 18 3.29

nrl02 1,425.5 10(11) 41 17.96 1.17 1,409 15 3.5

nrl06 1,308.4 9 434 32.2 1.19 1,293 30 14.9

nrl07 1,288.2 8 654 79.28 6.37 1,211.1 255 324.5

nrllO 1,309.4 8 594 71.19 9.39 1,197 38 27.13

nrcl05 1,455 9 119 9.39 7.36 1,355.3 90 70.23

nrcl08 1,098.1 6
Avg =

114 11.59 0 1,098.1
Avg =

82
50

598.9
274 54.94 1.79 83.41

Table 8 - 50-customer INIT results where optimal schedules are known

On average, 274 iterations were required to find the best solution in a time of

54.94 seconds for the INIT algorithm. This represents a savings of 34% in time

to find the best solution when compared to the exact VRPTW solutions of Kohl.

The overall difference in solution quality from the optima was 1.79%. Six of 15

optimal solutions were matched and a very competitive solution using one less

vehicle was identified for problem nrl02.

105

For the remaining problems, 155 iterations, on average, were required to

find the best solution in a time of 17.65 seconds for the INIT algorithm. This

represents a savings of 92.8% in time to find the best solution when compared to

the RTS heuristic VRPTW solutions of Carlton. The overall difference in

solution quality from the best solutions was 1.91%. Five of 14 best solutions

were matched. A solution using fewer vehicles was found for mixed problem

nrclOl.

Problem Vehs Iter to Time % zun Iter to Comp
Instance Zt(T) Used(#) Best to Best Dev Carlton Best Time
nrlOl 1,580.6 12 275 55.45 2.26 1,545.5 97 3
nrl03 1,292.9 9 48 8.83 1.18 1,277.9 736 56.83
nrl04 1,156.8 7 113 18.14 0.93 1,146.1 1,238 98.78
nrl05 1,439.4 10(9) 56 7.75 2.7 1,401.7 6,854 381.31
nrl08 1,124.1 6 65 13.23 0 1,124.1 4,748 388.45
nrl09 1,290.9 8 189 18.15 0 1,290.9 7,046 454.7
nrlll 1,212.1 7 227 34.22 0 1,212.1 6,278 461.85
nrll2 1,205.6 8(6) 118 21.41 5.73 1,140.4 164 14.8
nrclOl 1,466.6 9(10) 27 2.73 0.05 1,467.4 3,973 189.65
nrcl02 1,342.3 8 38 4.63 0.25 1,338.9 7,143 362.43
nrcl03 1,279.4 7(6) 422 30.83 5.46 1,213.2 6,811 408.39
nrcl04 1,047.5 5 32 3.95 0 1,047.5 3,346 251.16
nrcl06 1,228 6 263 8.66 0 1,228 3,443 189.15

nrcl07 1,237.7 7(6)

Avg =

307 19.14 8.15 1,144.4

Avg =

2,434

3,879

170.71

155 17.65 1.91 245.09

Table 9 - INIT results for remaining 50-customer problems

106

Problem Vehs Iter to Time % Zt(T) Iter to Comp
Instance Zt(T) Used(#) Best to Best Dev by Kohl Best Time

nclOl 4,862.4 5 34 2.36 0 4,862.4 24 2.07

ncl02 4,861.4 5 307 307 0 4,861.4 38 14.89

ncl03 4,904.2 5 157 25.33 0.88 4,861.4 34 26.45

ncl04 4,864.7 5 355 83.07 0.19 4,855.6 53 153.56

ncl05 4,868.2 5 553 33.9 0.12 4,862.4 17 1.5

ncl06 4,862.4 5 28 3.11 0 4,862.4 19 1.34

ncl07 4,862.4 5 44 7.28 0 4,862.4 26 5.43

ncl08 4,862.4 5 359 46.04 0 4,862.4 23 3.53

ncl09 4,871.5 5 327 94.39 0.19 4,862.4 18 3.29

nrlOl 1,580.6 12 275 55.45 2.37 1,544 19 5.86

nrl02 1,425.5 10(11) 41 17.96 1.17 1,409 15 3.5

nrl03 1,292.9 9 48 8.83 1.57 1,272.9 157 136.09

nrl04 1,156.8 7(6) 113 18.14 2.79 1,125.4 676 3,105.7

nrl05 1,439.4 10(9) 56 7.75 2.87 1,399.3 56 32.86

nrl06 1,308.4 9(8) 434 32.2 1.19 1,293 30 14.9

nrl07 1,288.2 8(7) 654 79.28 6.37 1,211.1 255 324.5

nrl09 1,290.9 8 189 18.15 0.32 1,286.8 568 523.91

nrllO 1,309.4 8(7) 594 71.19 9.39 1,197 38 27.13

nrlll 1,212.1 7 227 34.22 0.41 1,207.2 4,574 5,054.3

nrclOl 1,466.6 9(8) 27 2.73 1.57 1,444 47 26.44

nrcl02 1,342.3 8(7) 38 4.63 1.5 1,322.5 1,315 2,209.5

nrcl03 1,279.4 7(6) 422 30.83 5.66 1,210.9 53 33.74

nrcl04 1,047.5 5 32 3.95 0.16 1,045.8 173 137.61

nrcl05 1,455 9(8) 119 9.39 7.36 1,355.3 90 70.23

nrcl06 1,228 6 263 8.66 0.39 1,223.2 121 135.16

nrcl07 1,237.7 7(6) 307 19.14 8.31 1,142.7 375 623.09

nrcl08 1,098.1 6
Avg =

114 11.59 0 1,098.1
Avg =

82
329

598.9

226 38.39 2.03 491.69

Table 10 - INIT results, 50-customers

On average, 226 iterations were required to find the best solution in a time of

38.4 seconds for the INIT algorithm. This represents a savings of 31% for

107

number of iterations and 92% in time to find the best solution when compared to

the exact VRPTW solutions of Kohl. The overall difference in solution quality

from the optima was 2.03%. Six of 27 optimal solutions were matched. Table

11 displays three solutions that violated the time windows constraints in total

amounts less than 20 time units and possessed lower objective values.

Vehs %
Problem Zt(T) Penalty^ Used Dev
nrclOl 1,435.1 12
nrcl03 1,261.6 8.6
nrcl05 1,388.4 6.7

9 -0.62
7 4.19
8 2.44

Table 11 - Infeasible tours using INIT

Problem Vehs Iter to Time % Zt(T) Iter to Comp
Instance Zt(T) Used Best to Best Dev by Kohl Best Time
nclOl 4,862.4 5 0 0.04 0 4,862.4 24 2.07
ncl02 4,861.4 5 11 1.02 0 4,861.4 38 14.89
ncl03 4,861.4 5 7 1.61 0 4,861.4 34 26.45
ncl04 4,855.6 5 50 11.87 0 4,855.6 53 153.56
ncl05 4,862.4 5 0 0.07 0 4,862.4 17 1.5

ncl06 4,862.4 5 0 0.06 0 4,862.4 19 1.34

ncl07 4,862.4 5 0 0.1 0 4,862.4 26 5.43

ncl08 4,862.4 5 0 0.23 0 4,862.4 23 3.53

ncl09 4,862.4 5 8 2.71 0 4,862.4 18 3.29

nrl02 1,409 11 263 25.04 0 1,409 15 3.5

nrl06 1,296.3 8 93 3.37 0.26 1,293 30 14.9

nrl07 1,211.1 7 138 10.86 0 1,211.1 255 324.5

nrllO 1,197 7 392 31.79 0 1,197 38 27.13

nrcl05 1,355.3 8 538 15.97 0 1,355.3 90 70.23

nrcl08 1,098.1 6
Avg =

62 4.86 0 1,098.1
Avg =

82
50

598.9

104 7.31 0.02 83.41

Table 12 - 50-customer NEW results where optimal schedules are known

108

On average, 104 iterations were required to find the best solution in a time of

7.31 seconds for the NEW algorithm. This represents a savings of 91.2% in time

to find the best solution when compared to the exact VRPTW solutions of Kohl.

The overall difference in solution quality from the optima was 0.02%. Fourteen

of 15 optimal solutions were matched.

For the remaining problems, 173 iterations were required, on average, to

find the best solution in a time of 11.83 seconds for the NEW algorithm. This

represents a savings of 93.6% in time to find the best solution when compared to

Problem Vehs Iter to Time % Z^CT) Iter to Comp
Instance Zt(T) Used Best to Best Dev Carlton Best Time

nrlOl 1,545.7 12 5 0.72 0.01 1,545.5 97 3

nrl03 1,277.9 9 385 30.2 0 1,277.9 736 56.83

nrl04 1,156.9 7 77 9.2 0.94 1,146.1 1,238 98.78

nrl05 1,401.7 9 101 2.95 0 1,401.7 6,854 381.31

nrl08 1,124.1 6 247 37.14 0 1,124.1 4,748 388.45

nrl09 1,290.9 8 362 18.3 0 1,290.9 7,046 454.7

nrlll 1,212.1 7 181 14.49 0 1,212.1 6,278 461.85

nrll2 1,140.4 6 140 17.88 0 1,140.4 164 14.8

nrclOl 1,474.1 10 20 0.6 0.46 1,467.4 3,973 189.65

nrcl02 1,342.7 8 314 16.41 0.28 1,338.9 7,143 362.43

nrcl03 1,213.2 6 31 1.54 0 1,213.2 6,811 408.39

nrcl04 1,047.5 5 14 1.19 0 1,047.5 3,346 251.16

nrcl06 1,228 6 185 3.39 0 1,228 3,443 189.15

nrcl07 1,173 6

Avg =

362 11.58 2.5 1,144.4

Avg =

2,434

3,879

170.71

173 11.83 0.3 245.09

Table 13 - NEW results for remaining 50-customer problems

the RTS heuristic VRPTW solutions of Carlton. The overall difference in

109

solution quality from the best solutions was 0.3%. Nine of 14 best solutions

were matched.

Problem Vehs Iterto Time to % Zt(T) Iterto Comp
Instance Zt(T) Used(#) Best Best Dev by Kohl Best Time

nclOl 4,862.4 5 0 0.04 0 4,862.4 24 2.07
ncl02 4,861.4 5 11 1.02 0 4,861.4 38 14.89
ncl03 4,861.4 5 7 1.61 0 4,861.4 34 26.45
ncl04 4,855.6 5 50 11.87 0 4,855.6 53 153.56
ncl05 4,862.4 5 0 0.07 0 4,862.4 17 1.5
ncl06 4,862.4 5 0 0.06 0 4,862.4 19 1.34
ncl07 4,862.4 5 0 0.1 0 4,862.4 26 5.43
ncl08 4,862.4 5 0 0.23 0 4,862.4 23 3.53
ncl09 4,862.4 5 8 2.71 0 4,862.4 18 3.29
nrlOl 1,545.7 12 5 0.72 0.11 1,544 19 5.86
nrl02 1,409 11 263 25.04 0 1,409 15 3.5
nrl03 1,277.9 9 385 30.2 0.39 1,272.9 157 136.09
nrl04 1,156.9 7(6) 77 9.2 2.8 1,125.4 676 3,105.7
nrl05 1,401.7 9 101 2.95 0.17 1,399.3 56 32.86
nrl06 1,296.3 8 93 3.37 0.26 1,293 30 14.9
nrl07 1,211.1 7 138 10.86 0 1,211.1 255 324.5
nrl09 1,290.9 8 362 18.3 0.32 1,286.8 568 523.91
nrllO 1,197 7 392 31.79 0 1,197 38 27.13
nrlll 1,212.1 7 181 14.49 0.41 1,207.2 4,574 5,054.3
nrclOl 1,474.1 10(8) 20 0.6 2.08 1,444 47 26.44
nrcl02 1,342.7 8(7) 314 16.41 1.53 1,322.5 1,315 2,209.5
nrcl03 1,213.2 6 31 1.54 0.19 1,210.9 53 33.74
nrcl04 1,047.5 5 14 1.19 0.16 1,045.8 173 137.61
nrcl05 1,355.3 8 538 15.97 0 1,355.3 90 70.23
nrcl06 1,228 6 185 3.39 0.39 1,223.2 121 135.16
nrcl07 1,173 6 362 11.58 2.65 1,142.7 375 623.09
nrcl08 1,098.1 6

Avg =
62 4.86 0 1,098.1

Avg =
82

329
598.9

133 8.15 0.42 491.69

Table 14 - NEW results, 50-customers

110

On average, 133 iterations were required to find the best solution in a time of 8.2

seconds for the NEW algorithm. This represents a savings of 59.5% for number

of iterations and 98.3% in time to find the best solution when compared to the

exact VRPTW solutions of Kohl. The overall difference in solution quality from

the optima was 0.42%. 14 of 27 optimal solutions were matched. Table 15

displays three solutions that violated the time windows constraints in total

amounts less than 20 time units and possessed lower objective values.

Vehs %
Problem Zt(T) Penalty,« Used Dev
nrclOl 1,428.3 12 9 -1.09
nrcl03 1,244.5 0.4 7 -6.9
nrcl08 1,028.4 9.4 5 -6.35

Table 15 - Infeasible tours using NEW

On average, 126 iterations were required to find the best solution in a

time of 6.74 seconds for the NEWc algorithm results in Table 16. This

represents a savings of 92% in time to find the best solution when compared to

the exact VRPTW solutions of Kohl. The overall difference in solution quality

from the optima was 0.07%. Thirteen of 15 optimal solutions were matched and

problem nrl02 yielded a solution with fewer vehicles.

Problem Vehs Iterto Time %
Instance Zt(T) Used(#) Best to Best Dev

Zt(T) Iter to Comp
by Kohl Best Time

nclOl 4,862.4 5 0 0.05 0
ncl02 4,861.4 5 11 1.02 0

111

4,862.4 24 2.07
4,861.4 38 14.89

ncl03
ncl04
ncl05
ncl06
ncl07
ncl08
ncl09
nrl02
nrl06
nrl07
nrllO
nrcl05
nrcl08

4,861.4
4,855.6
4,862.4
4,862.4
4,862.4
4,862.4
4,862.4

5
5
5
5
5
5
5

1,417.9 10(11)
1,293

1,211.1
1,197

1,361.7
1,098.1

8
7
7
8
6

Avg =

7 1.74 0
226 34.48 0

0 0.06 0
0 0.05 0
0 0.11 0
0 0.22 0
8 2.67 0

190 10.89 0.63
107 2.37 0
414 16.25 0
599 20.5 0
156 3.41 0.47
175 7.24 0
126 6.74 0.07

4,861.4
4,855.6
4,862.4
4,862.4
4,862.4
4,862.4
4,862.4

1,409
1,293

1,211.1
1,197

1,355.3
1,098.1

Avg =

34
53
17
19
26
23
18
15
30

255
38
90
82

26.45
153.56

1.5
1.34
5.43
3.53
3.29
3.5
14.9

324.5
27.13
70.23
598.9

50 83.41

Table 16 - 50-customer NEWc results where optimal schedules are known

Problem Vehs Iterto Time % Z^CT) Iter to Comp
Instance Zt(T) Used(#) Best to Best Dev Carlton Best Time

nrlOl 1,545.7 12 5 0.75 0.01 1,545.5 97 3
nrl03 1,294.8 9 94 2.79 1.33 1,277.9 736 56.83
nrl04 1,147.4 7 327 20.68 0.11 1,146.1 1,238 98.78

nrl05 1,414.7 9 49 0.98 0.93 1,401.7 6,854 381.31
nrl08 1,124.1 6 475 26.15 0 1,124.1 4,748 388.45

nrl09 1,290.9 8 376 8.75 0 1,290.9 7,046 454.7

nrlll 1,212.1 7 193 6.74 0 1,212.1 6,278 461.85

nrll2 1,140.4 6 252 14.42 0 1,140.4 164 14.8

nrclOl* 1,466.6 9(10) 692 11.36 -0.05 1,467.4 3,973 189.65

nrcl02 1,342.7 8 41 1.52 0.28 1,338.9 7,143 362.43

nrcl03 1,213.4 6 31 1.27 0.02 1,213.2 6,811 408.39

nrcl04 1,047.5 5 14 1.13 0 1,047.5 3,346 251.16

nrcl06 1,228 6 266 3.73 0 1,228 3,443 189.15

nrcl07 1,173 6

Avg =

363 8.09 2.5 1,144.4

Avg =

2,434

3,879

170.71

227 7.74 0.38 245.09

Table 17 - NEWc results for remaining 50-customer problems

112

On average, 227 iterations were required to find the best solution in a time of

7.74 seconds for the NEWc algorithm results in Table 17. This represents a

savings of 98.9% in time to find the best solution when compared to the RTS

heuristic VRPTW solutions of Carlton. The overall difference in solution quality

from the best solutions was 0.38%. Six of 14 best solutions were matched. A

solution using fewer vehicles was found for mixed problem nrclOl.

Problem Vehs Iterto Time to % Zt(T) Iterto Comp
Instance Zt(T) Used(#) Best Best Dev by Kohl Best Time

nclOl 4,862.4 5 0 0.05 0 4,862.4 24 2.07
ncl02 4,861.4 5 11 1.02 0 4,861.4 38 14.89
ncl03 4,861.4 5 7 1.74 0 4,861.4 34 26.45
ncl04 4,855.6 5 226 34.48 0 4,855.6 53 153.56
ncl05 4,862.4 5 0 0.06 0 4,862.4 17 1.5
ncl06 4,862.4 5 0 0.05 0 4,862.4 19 1.34
ncl07 4,862.4 5 0 0.11 0 4,862.4 26 5.43
ncl08 4,862.4 5 0 0.22 0 4,862.4 23 3.53
ncl09 4,862.4 5 8 2.67 0 4,862.4 18 3.29
nrlOl 1,545.7 12 5 0.75 0.11 1,544 19 5.86
nrl02 1,417.9 10(11) 190 10.89 0.63 1,409 15 3.5
nrl03 1,294.8 9 94 2.79 1.72 1,272.9 157 136.09
nrl04 1,147.4 7(6) 327 20.68 1.95 1,125.4 676 3,105.7
nrl05 1,414.7 9 49 0.98 1.1 1,399.3 56 32.86
nrl06 1,293 8 107 2.37 0 1,293 30 14.9
nrl07 1,211.1 7 414 16.25 0 1,211.1 255 324.5
nrl09 1,290.9 8 376 8.75 0.32 1,286.8 568 523.91
nrllO 1,197 7 599 20.59 0 1,197 38 27.13
nrlll 1,212.1 7 193 6.74 0.41 1,207.2 4,574 5,054.3
nrclOl 1,466.6 9(8) 692 11.36 1.57 1,444 47 26.44

nrcl02 1,342.7 8(7) 41 1.52 1.53 1,322.5 1,315 2,209.5
nrcl03 1,213.4 6 31 1.27 0.21 1,210.9 53 33.74

113

nrcl04 1,047.5 5 14 1.13 0.16 1,045.8 173 137.61
nrcl05 1,361.7 8 156 3.41 0.47 1,355.3 90 70.23
nrcl06 1,228 6 266 3.73 0.39 1,223.2 121 135.16
nrcl07 1,173 6 363 8.09 2.65 1,142.7 375 623.09
nrcl08 1,098.1 6 175 7.24 0 1,098.1 82 598.9

Avg=_160 626 0.49 | Avg= 329 491.69

Table 18 - NEWc results, 50-customers

On average, 160 iterations were required to find the best solution in a time of

6.26 seconds for the NEWc algorithm. This represents a savings of 51.4% for

number of iterations and 98.7% in time to find the best solution when compared

to the exact VRPTW solutions of Kohl. The overall difference in solution quality

from the optima was 0.49%. 12 of 27 optimal solutions were matched. Table 19

displays three solutions that violated the time windows constraints in total

amounts less than 20 time units and possessed lower objective values.

Vehs %
Problem Zt(T) Penalty^ Used Dev

nrl02 1,400.6 7 10 -0.6

nrl05 1,399.9 3.3 9 0.04

nrcl08 1,028.4 9.4 5 -6.35

Table 19 - NEWc infeasible tour results, 50-customers

4.6.3 100-customers

The tables indicate the twelve problems investigated. Desrochers,

Desrosiers and Solomon (1992) claim to have solved seven problems to

optimality. Carlton (1995,214-215) used their results for comparison with his

114

RTS heuristic solutions. Kohl (1995,179-188) reported to solve all twelve of the

investigated problems to optimality and 14 of the 29 Solomon benchmark

problems to optimality. However, the optimal schedules for these solutions were

not provided except that Kohl's dissertation (1995,185) indicated that c 105 has

the same optimal solution as five of the other clustered problems; clOl, cl02,

cl06, cl07 and cl08. Carlton's code was used to identify the optimal tour for the

six clustered problems and the best tour for the three radially dispersed problems

and the three remaining clustered problems along with their corresponding

schedule. These schedules were used to create the PDPTW input data structure.

Results are only presented for the NEW algorithms. The INIT algorithm is not

competitive timewise for the larger problems. Tables 20-26 use the same format

as described previously for the 50-customer problems. 500 iterations were run

for the algorithm.

Problem Vehs Iter to Time to % Zt(T) Iter to Comp
Instance Zt(T) Used Best Best Dev by Kohl Best Time

nclOl 9,827.3 10 0 0.25 0 9,827.3 26 6.4

ncl02 9,827.3 10 0 1.91 0 9,827.3 66 98.43

ncl04 9,814.8 10 352 166.04 -0.08 9,822.9 57 1,150.8

ncl05 9,827.3 10 0 0.51 0 9,827.3 24 6.68

ncl06 9,827.3 10 0 0.54 0 9,827.3 33 12.37

ncl07 9,826.1 10 75 9.36 -0.01 9,827.3 35 12.4

ncl08 9,826.1 10 83 31.49 -0.01 9,827.3 39 26.77

ncl09 9,826.1 10
Avg =

194 110.56 -0.01 9,827.3
Avg =

35
39

32.95

88 40.08 -0.01 168.35

Table 20 - 100-customer NEW results where optimal schedules are known

115

On average, 88 iterations were required to find the best solution in a time of

40.08 seconds for the NEW algorithm. This represents a savings of 76.2% in

time to find the best solution when compared to the exact VRPTW solutions of

Kohl. The overall difference in solution quality from the optima was -0.01%.

Four of eight optimal solutions were matched. Four "better than" optimal

solutions were discovered for problems ncl04, ncl07, ncl08 and ncl09 which

were reported as optimal by Kohl. These better than optimal solutions result

because vehicle demands were modified to account for unloading supplies. The

four better than optimal solutions would be infeasible solutions for the VRPTW

because of vehicle capacity violations.

Problem Vehs Iter to Time to % Z^CT) Iter to Comp
Instance Zt(T) Used(#) Best Best Dev Carlton Best Time

ncl03 9,829.9 10 25 16.5 0 9,829.9 1,150 324.68

nrlOl 2,673 20 138 41.1 0.71 2,654.2 1,345 206.6

nrl02 2,529.4 18 459 42.7 1.79 2,485 1,863 333.5

nrl05 2,494.1 17(16)
Avg =

217 44.63 5.56 2,362.7
Avg =

4,770
2,282

952.78
209 36.23 2.01 454.39

Table 21 - NEW results for remaining 100-customer problems

On average, 209 iterations were required to find the best solution in a time of

36.23 seconds for the NEW algorithm. This represents a savings of 92% in time

to find the best solution when compared to the RTS heuristic VRPTW solutions

of Carlton. The overall difference in solution quality from the best solutions was

2.01%. One of four best solutions was matched.

116

Problem Vehs Iter to Time to % Zt(T) Iter to Comp
Instance Zt(T) Used(#) Best Best Dev by Kohl Best Time

nclOl 9,827.3 10 0 0.25 0 9,827.3 26 6.4

ncl02 9,827.3 10 0 1.91 0 9,827.3 66 98.43

ncl03 9,829.9 10 25 16.5 0.04 9,826.3 70 339.72
ncl04 9,814.8 10 352 166.04 -0.08 9,822.9 57 1,150.8
ncl05 9,827.3 10 0 0.51 0 9,827.3 24 6.68

ncl06 9,827.3 10 0 0.54 0 9,827.3 33 12.37
ncl07 9,826.1 10 75 9.36 -0.01 9,827.3 35 12.4

ncl08 9,826.1 10 83 31.49 -0.01 9,827.3 39 26.77
ncl09 9,826.1 10 194 110.56 -0.01 9,827.3 35 32.95
nrlOl 2,673 20(18) 138 41.1 1.34 2,637.7 90 142.38
nrl02 2,529.4 18(17) 459 42.7 2.55 2,466.6 32 97.56
nrl05 2,494.1 17(15)

Avg =
217 44.63 5.89 2,355.3

Avg =
490
83

2,331.1
128 38.8 0.8 354.8

Table 22 NEW results, 100-customers

Overall, 128 iterations were required, on average, to find the best solution

in a time of 38.8 seconds for the NEW algorithm. This represents a savings of

89.1% in time to find the best solution when compared to the exact VRPTW

solutions of Kohl. The overall difference in solution quality from the optima was

0.8%. 4 optimal tours were matched. The NEW algorithm found better results

for the clustered problems cl04, cl07, cl08 and cl09 because of the modified

PDPTW demands. One better infeasible solution was found using this algorithm

for problem nrl05. The travel time was 2,405.5 with a 10.5 time windows

violation. The tour used 15 vehicles and was 2.13% from the optimal solution.

117

Problem Vehs Iter to Time to % Zt(T) Iter to Comp
Instance Zt(T) Used Best Best Dev by Kohl Best Time

nclOl 9,827.3 10 0 0.24 0 9,827.3 26: 6.4

ncl02 9,827.3 10 0 2 0 9,827.3 66 98.43
ncl04 9,814.8 10 441 459.07 -0.08 9,822.9 57 1,150.8

ncl05 9,827.3 10 0 0.5 0 9,827.3 24 6.68

ncl06 9,827.3 10 0 0.55 0 9,827.3 33 12.37
ncl07 9,826.1 10 31 4.03 -0.01 9,827.3 35 12.4
ncl08 9,826.1 10 30 12.73 -0.01 9,827.3 39 26.77
ncl09 9,826.1 10

Avg =
82 34.22 -0.01 9,827.3

Avg =
35
39

32.95
73 64.17 -0.01 168.35

Table 23 - 100-customer NEWc results where optimal schedules are known

On average, 73 iterations were required to find the best solution in a time of

64.17 seconds for the NEWc algorithm. This represents a savings of 61.9% in

time to find the best solution when compared to the exact VRPTW solutions of

Kohl. The overall difference in solution quality from the optima was -0.01%.

Four of eight optimal solutions were matched. Again, four "better than" optimal

solutions were discovered for problems ncl04, ncl07, ncl08 and ncl09 which

were reported as optimal by Kohl. These better than optimal solutions result

because vehicle demands were modified to account for unloading supplies. The

four better than optimal solutions would be infeasible solutions for the VRPTW

because of vehicle capacity violations.

On average, 154 iterations were required to find the best solution in a

time of 33.05 seconds for the NEWc algorithm. This represents a savings of

118

92.7% in time to find the best solution when compared to the RTS heuristic

VRPTW solutions of Carlton. The overall difference in solution quality from the

best solutions was 1.02%. One of four best solutions was matched and a better

solution was found for nrl 01.

Problem Vehs Iterto Time to % ZUT) Iterto Comp
Instance Zt(T) Used(#) Best Best Dev Carlton Best Time

ncl03 9,829.9 10 25 17.05 0 9,829.9 1,150 324.68
nrlOl 2,645.6 20 212 33.75 -0.32 2,654.2 1,345 206.6
nrl 02 2,593.9 19(18) 73 23.27 4.38 2,485 1,863 333.5
nrl 05 2,363 16

Avg =
308 58.13 0.01 2,362.7

Avg =
4,770
2,282

952.78
154 33.05 1.02 454.39

Table 24 - NEWc results for remaining 100-customer problems

Problem Vehs Iter to Time to % Zt(T) Iter to Comp
Instance Zt(T) Used(#) Best Best Dev by Kohl Best Time

nclOl 9,827.3 10 0 0.24 0 9,827.3 26 6.4
ncl02 9,827.3 10 0 2 0 9,827.3 66 98.43
ncl03 9,829.9 10 25 17.05 0.04 9,826.3 70 339.72
ncl04 9,814.8 10 441 459.07 -0.08 9,822.9 57 1,150.8
ncl05 9,827.3 10 0 0.5 0 9,827.3 24 6.68
ncl06 9,827.3 10 0 0.55 0 9,827.3 33 12.37
ncl07 9,826.1 10 31 4.03 -0.01 9,827.3 35 12.4

ncl08 9,826.1 10 30 12.73 -0.01 9,827.3 39 26.77

ncl09 9,826.1 10 82 34.22 -0.01 9,827.3 35 32.95

nrlOl 2,645.6 20(18) 212 33.75 0.3 2,637.7 90 142.38

nrl 02 2,593.9 19(16) 73 23.27 5.16 2,466.6 32 97.56

nrl 05 2,363 16(15)
Avg =

308 58.13 0.33 2,355.3
Avg =

490
83

2,331.1
100 53.8 0.47 354.8

Table 25 - NEWc results, 100-cus itomers

On average, 100 iterations were required to find the best solution in a time of

119

53.8 seconds for the NEWc algorithm. This represents a savings of 84.8% in

time to find the best solution when compared to the exact VRPTW solutions of

Kohl. The overall difference in solution quality from the optima was 0.47%.

Four optimal tours were matched. The NEW algorithm found better results for

the clustered problems cl04, cl07, cl08 and cl09 because of the modified

PDPTW demands as discussed in Section 3.3.

4.7 CONCLUSIONS

Limiting the search to only precedence viable solutions allows for use of

an expensive SPI neighborhood search scheme. The dominance of the

precedence and coupling constraints is critical to developing appropriate search

strategies. The algorithms are compared to the current best known optimal and

heuristic approaches to the VRPTW. The NEW algorithms consistently return

solutions within one percent, on average, in a fraction of the computational effort

required by the other algorithms. Feasible solutions are found for all problem

instances along with several infeasible tours. The infeasible solutions obtained

are more than workable in a real world scenario.

Optimal or near-optimal solutions are obtained for the modified problem

instances in real-time despite the addition of increased information to transform

the VRPTW data sets into PDPTW data sets. Plus, not all the optimal schedules

were known for all the problem instances. Setting up the input data structure for

120

the best solution as compared to the optimal tour displayed problems with the

search. Often times, the best solution competed with the hidden optimal tour to

hinder the search trajectory. This led the search to find a sub-optimal tour.

However, NEW and NEWc displayed its strength by being able to explore

infeasible regions of the solution space and find competitive solutions and even

infeasible tours with reduced travel times.

The PDPTW solutions obtained in this research were compared to the

optimal solutions or the best solutions that Carlton's code could generate for the

VRPTW. The solutions that are reported by the PDPTW cannot be reported as

optimal for a couple reasons. First, the PDPTW allows for both loading and

unloading of supplies. Routes that finished "early" in the VRPTW problem

instances because of capacity limitations do not necessarily encounter that

problem in the PDPTW. Vehicles may be able to continue gathering and

delivering supplies until the planning horizon requires the vehicle to return to the

depot for the PDPTW. However, these routes generated by the PDPTW would

violate the vehicle capacity constraints as evidenced in the four 100-customer

clustered problems from section 4.6.3. Finally, the PDPTW algorithm presented
/

in this research is a metaheuristic and not an exact algorithm. This research can

only report its solutions as the current best solution found until other heuristic

procedures find better solutions or an exact method is developed to validate the

121

results of this work.

Modifying the candidate list for the NEWc algorithm expedites the

overall search process. By altering the search trajectory NEWc was able to

uncover more infeasible tours with reduced travel times.

The expectation for the INIT algorithm was to achieve comparable results

for small problems. However, as the problem instances grew, solutions were of

poorer quality than the NEW and NEWc algorithms. The results also reconfirm

the results of other researchers, that it is better to start with a feasible initial tour.

122

Chapter 5

The Generalized Precedence Scenarios

In real world situations, a supplier can provide support for several

customers and retail stores can receive supplies from several different companies.

In these scenarios the order for picking up supplies or making deliveries may not

be important. The objective will be to minimize the total travel time for

distribution to assist in keeping the price of the product or service low. Serial

precedence will be established if there exists some predefined ordering.

This chapter will discuss how to transform three generalized-PCKPTWs

into PDPTWs. Modifications to the input data structure will be presented and

representative problems used to illustrate the transformation of a single supplier

supporting several delivery locations, several suppliers supporting a single

delivery location and serial precedence where a predefined ordering is known for

a mixture of suppliers and delivery locations. For these scenarios, recall the

following notation:

T= the current value of the travel time or the objective function value,
tij = the travel time from node / to node./, with
0 = to be the depot node.

The final example, a true PCRPTW, will demonstrate how to modify the input

data structure when the three mentioned scenarios are combined.

123

5.1 The Single Supplier Supporting Several Delivery Locations.

This scenario can be transformed to the simple pairwise precedence

scenario or PDPTW by adding dummy supply nodes to match the total number of

delivery nodes. The following digraphs, figures 4 and 5, and supporting input

data illustrate this procedure. r\ A

S<T^ >D2
The basic model is

Figure 4 - The generalized precedence digraph

node x, yt demand early late service pred succ

S *s ys ds es Is s 0 Dl,2or3

Dl XD1 yDi -dD1 eDl 1D1
SD1 S 0

D2 XD2 yD2 -dD2 eD2 ^D2 SD2 s 0

D3 XD3 yD3 -dD3 eD3 1D3 SD3 s 0

Table 26 - The supporting input data structure for the single-to-many model

In this model, ds = | EjLi doi \. The supply node, S, does not have a clearly

defined immediate successor. The immediate successor must be one of the three

delivery locations. However, the supply node must be visited prior to visiting

any of the three delivery locations.

Applying the transformation, the modified model becomes the digraph in

Figure 5. The directed arcs indicate precedence while the edges display the

124

Figure 5 - The transformed digraph

random ordering among the delivery locations that the algorithm must sort out.

The associated transformed input data is reflected in Table 27.

node x, y* demand early late service pred succ

si xs ys ds es Is s 0 Dl

Dl XD1 yDi -dD, eDl ID. SD1 SI 0

S2 xs ys 0 es Is 0 0 D2

D2 XD2 yD2 -dD2 eD2 TO SD2 S2 0

S3 xs ys 0 es 1S 0 0 D3

D3 XD3 yD3 -dD3 eD3 *D3 SD3 S3 0

Table 27 - The supporting input data structure for the transformed model

The dummy nodes will identically match the original supply node except that the

service time, s, will be set to zero.

The objective for the algorithm is to minimize total travel time. Thus, the

algorithm will choose one of the six contiguous orderings of the supply nodes ...

SI - S2 - S3 ... before it selects one of the corresponding delivery locations. No

other supply nodes or delivery nodes will be interspersed amongst this ordering

125

because that would increase the total travel time. Specifically, a sample initial

tour ordering could be represented as

... D SI Dl D S2 D2 D S3 D3 D S4 D4 D ... DSnDnD ...

The SPI neighborhood search will determine if it is more profitable to combine

the node pair (SI, D2) with node pair (S2, D2) or, say, node pair (S4, D4). The

total travel time will be modified, for example, choosing the former tour

... D SI S2 D2 Dl D ... decreases the initial total travel time by

T- to& - tD2,0 + tD2J)\

SPI will determine the appropriate ordering for the supply nodes and delivery

nodes to cause the greatest reduction in travel time. The supply nodes will be

coupled together. Similarly, to insert the node pair (S4, D4) onto route 1,

... D SI S4 D4 Dl D ..., adjusts the initial travel time by

T- tojs4 - tm,o + ts\£4 + tmj>\

Adding the time to travel "between the supply nodes" makes this perturbation not

as likely. In a clustered problem with S4 located close to SI and D4 close to Dl,

this second case may prove more beneficial only if node D2 is located further

away from the depot than D4, i.e.,

tojS2 « 10,54, tS\M * °»fDAJD\ « 0 SO that tm,0 ^ tD2,0 - tD2J)\ •

This transformation reveals if additional vehicles will be required for that

supplier to support those corresponding deliveries within the planning horizon.

126

Obviously, the node pairs (SI, Dl), (S2, D2) and (S3, D3) will end up on

different routes only if they cannot all be supported by the same vehicle.

Example #1. The data set SINGLEC modifies problem set nclOl, the first

25-customer clustered problem presented by Solomon. The first route in the

optimal tour is ordered

5 - 3 - 7 - 8 -10 -11 - 9 - 6 - 4 - 2 -1 and 26

where node 26 was modeled after node 1 to provide for pairwise precedence.

The first route precedence is altered to provide a single supplier, supporting 3

delivery locations, or
7-8,10,11

where node 7 supplies delivery locations 8,10 and 11. Dummy nodes 27 and 28

modeling node 7 were added. The best feasible tour, like the original problem

instance, was the initial tour. The resulting schedule is depicted in table 28. The

shading is used to delineate the end of the route and the return to the depot.

Routes will be designated by the vehicle identification number located at the end

of the route. In this instance, the first route is designated route 29; the second,

route 30; and the last, route 31. The optimal travel time of this tour is 2441.3.

The cost of the tour is 2882 which means drivers wait for 440.7 minutes. The

length of the tour is 1049.2. The search found only a total of 19 feasible tours

and 100 different tours because the average time window length of 51.7 for a

127

planning horizon of 1236 indicates tight time windows and few

nodei arrivalfi] departure[i] late[i]

0 0 0 1,236

5 15.1 15.1 55

3 106.1 106.1 146

*27 198.1 198.1 225

*28 198.1 198.1 225

*7 198.1 198.1 225

8 290.9 290.9 324

10 384.5 384.5 410

11 477.5 477.5 505

9 570.6 570.6 605

6 662.8 662.8 702

4 755 755 776.4

2 848.6 848.6 870

1 940.6 940.6 967

26 940.6 940.6 967

29 1,049.2 0 1,236

13 30.8 30.8 54

17 124.8 124.8 148

18 217.8 217.8 250

19 312.8 312.8 345

15 407.8 407.8 429

16 502.8 502.8 528

14 594.8 594.8 620

12 687.8 687.8 721

30 815.8 0 1,236

20 10 10 49

24 105 105 144

128

25 197 197 224

23 291.2 732 777

22 825 825 873

21 917 917 965

31 1,017.1 0 1,236

* These 3 nodes can occur in any order.

Table 28 - Optimal Tour Data for SINGLEC

feasible tours. The 19 feasible tours found is accurate for only the transformed

instance, not the original problem.

SINGLEC using INIT starts with an initial marginally infeasible tour with

a tour cost of 5250.3 and a travel time of 2522.0 for 5 vehicles. INIT uses

Solomon's II insertion algorithm to generate the marginally infeasible tour. The

best feasible and optimal tour was found on the 5th iteration. The only difference

in the tour is it provides a different ordering - 28,27, 7 - for the three similar

nodes. This search found a total of 9 feasible tours out of 100 different tours. It

encountered a lesser number of feasible tours because the search starts with an

infeasible tour and expends effort correcting the time windows violations.

Example #2. SINGLER is a radially dispersed problem where a single supplier

supplies 3 delivery locations. This problem is modified from nrl02. This

problem was selected because it provides infeasible tours with reduced travel

times and the optimal tour was identified by the NEWc algorithm, but not the

129

NEW algorithm. The pairwise precedence for the last route in table 29 was

modified

nodei arrival [i] departure[i] late[i]

...

36 215.5 0 230

*29 22.3 22.3 189.5

*3 22.3 22.3 82

*30 32.3 32.3 113.7

9 47.3 97 107

20 118.1 126 136

1 152.4 152.4 204

37 177.6 0 230

* Nodes 29, 3 and 30 can occur in any order.

Table 29 - Optimal Tour Data for SINGLER

from 3 - 9 and 20 -1 to a generalized precedence of 3 supplying 9,20 and 1.

Dummy nodes 29 and 30 modeling node 3 were added to the problem. Dummy

nodes 26 - 28 were needed for pairwise precedence for the three routes from the

optimal tour with an odd number of customers.

NEWc finds the optimal solution for SINGLER. The best feasible tour

was found on the 17th iteration, much faster than the 281 iterations required for

the nrl02 version. The resulting schedule for the final route is depicted in table

29. The cost of the tour is 1256 with an optimal travel time of 797.7 using 7

vehicles. A super optimal tour was found on the 87th iteration. The resulting

130

schedule is:

nodei arrival [i] departure[i] late[i]

0 0 0 230

14 32 32 42

16 53.1 75 85

8 108 108 105.0*

17 131.9 157 167

5 177 177 199

28 177 177 199

33 207.6 0 230

18 15.8 87 97

26 87 87 97

6 108.1 108.1 109

13 125.1 159 169

38 180.1 0 230

7 21.2 21.2 52

11 46.2 67 77

19 84 84 86

10 109 124 134

39 159.4 0 230

21 18 18 50

23 46 68 78

24 109.6 153 163

12 178 178 205

42 203 0 230

2 18 18 48

15 41 61 71

22 86.8 97 107

4 121.1 149 159

131

25 169 172 182

27 172 172 182

43 215.5 0 230 1

29 22.3 22.3 189.5

30 22.3 22.3 113.7

3 22.3 22.3 82

9 47.3 97 107

20 118.1 126 136

1 152.4 152.4 204

45 177.6 0 230

Table 30 - Infeasible Tour Data for SINGLER

The travel time of this tour is 771.2 using 6 vehicles. This provides a savings of

over 3% in total travel and one vehicle. The time windows violation is only 3

units for one customer which is negligible. Table 30 illustrates one of several the

infeasible tours discovered. The search found a total of 84 feasible tours and

100 different tours. The average time window length is 38.7 units and the

planning horizon is 230 units.

NEW found the same feasible solution later in the search for SINGLER

than the original nrl02. This search trajectory does not enable the routine to find

the optimal solution. The same infeasible tours were identified during the

search.

INIT found the optimal solution on the 44th iteration. INIT also did not

find the optimal tour for the original nrl02 instance. The added structure

132

afforded by the transformation helped the search discover the optimal. The

search still only found a total of 57 feasible tours out of 100 different tours.

Infeasible tours were not identified.

Example #3. SINGLEM is a radially dispersed and clustered mixed problem

that has one supplier supplying 3 delivery locations. It is modified from nrcl03.

The original ordering for the modified route is

7,6,8,5,3,1,4 and 2.

The precedence was modified to

7-1; 4-2; and 6-8, 5 and 3.

interspersing the generalized precedence ordered subset (gPOS) between the

pairwise-POS. Dummy nodes 27 and 28 were added to model node 6.

SINGLEM using NEW found the optimal tour in the same number of

iterations as the original problem instance. Table 31 shows the resulting

schedule for the altered route.

nodei arrival [i] departure[i] late[i]

... ... ••• ...

7 35.3 35.3 166.9

*27 48.3 95 125

*6 95 95 105.2

*28 105 105 125

8 110.8 110.8 121

5 127.8 127.8 189

133

3 139.8 139.8 190

1 152.8 152.8 191

4 169.8 169.8 171

2 185.1 185.1 199

31 225.9 o 240

* Again, these three can occur in any order.

Table 31 - Optimal Tour Data for SINGLEM

This problem shows the ability of the code to determine the correct ordering

when the pairs are interspersed amongst each other.

SINGLEM using NEWc also found the optimal tour on the 4th iteration.

The only difference was the ordering of the 3 similar nodes. In this instance, they

were ordered 6,27 and 28.

SINGLEM using INIT also found the optimal tour early in the search - by

the 8th iteration.

5.2 Several Suppliers Supporting a Single Delivery Location.

This scenario can be approached in the same manner as the

single-to-many problem instance by adding a delivery node for each additional

supply node that must be visited before making the delivery. The dummy nodes

modeling the delivery node will have no demand or service time requirements

and the appropriate pairwise precedence relationship will be established with a

corresponding supply node. The algorithm will determine the ordering of

134

suppliers that will minimize the travel time of making the group delivery. Three

example problems will be used to illustrate this process.

Example #1. MANYC has 3 suppliers supporting a single delivery location. The

problem was modified from ncl04, a problem instance with large time windows;

the average time window length (atwl) of 699.2 comprises over 56% of the

planning horizon length of 1236. Because of the large time windows, all of the

tours found are feasible. Plus, the neighborhood search methodologies will take

longer because of the increased number of moves that they must examine in order

to determine the best move to make.

To further test the code, the ordering for the route

7,8,11,9,6,4,2,1,3 and 5.

is assigned the precedence

7-9; 6-4; 3-5; and 8,11,2-1.

where nodes from the gPOS are broken up and interspersed among the

pairwise-POSs.

NEW and NEWc required 5 more iterations to solve MANYC than the 21

iterations it took in the original problem instance. The resulting schedule for this

modified route is:

135

nodei arrival[i] departure[i] late[i]

0 0 0 1,236

7 16 16 510.6

8 108.8 155 324

11 348.1 48 505

9 541.1 41.1 605

6 633.3 33.3 689.8

4 725.5 27 782

2 820.6 20.6 1,035

•1 912.6 1,002.6 1,127

*27 1,002.6 1,002.6 1,127

*28 1,002.6 1,002.6 1,127

3 1,006.2 1,006.2 1,039

5 1,097.2 1,097.2 1,130

29 1,202.3 0 1,236

...

* can be ordered 1 of 6 ways.

Table 32 - Optimal Tour Data for Route 29 of MANYC

Solving MANYC using INIT produced optimal results. However, it took

over three times longer to find the optimal tour; 76 versus 31 iterations, as it took

in the original PDPTW. In this instance, the additional nodes forced the

procedure to expend more effort to clean up the initial tour and altered the search

trajectory enough to require more iterations to determine the optimal tour. The

optimal tour was still discovered fairly early in the search.

Example #2. MANYR is a radially dispersed 25-customer problem modified

136

from nrl05. This had been a tough problem instance to find the optimal solution

to until the NEW and NEWc routines were developed using the sequential

pairwise-POS time-space insertion algorithm to create the initial tour. The older

algorithm, called BUILD, placed a single pairwise-POS on a route for the initial

tour requiring dedicated computer effort initially to reduce the number of

vehicles This created problems, as discussed in Chapter 4, whereby the search

blew by the optimal. INIT cannot even find a feasible solution. This instance

has few feasible solutions because the time windows are tight, about 11% of the

planning horizon (25.7 out of 230).

This problem uses 2 many-to-single operations. The first has nodes 19,

11,10 and 20 supporting customer 1. A separate route has nodes 2 and 15

supporting customer 13. Four additional dummy nodes, nodes 27-30, are

required for the transformation.

The added structure provided by making these modifications resulted in a

drastic reduction in the number of iterations to find the optimal tour. NEW finds

the optimal tour on the 9th iteration as compared to the 23 iterations in the

original problem instance. NEWc requires 61 iterations, way down from the 390

iterations for nrl05. The resulting schedule is

137

nodei arrival[i] departure[i] late[i]

0 0 0 230

7 21.2 71 87

18 91 91 107

8 111.4 111.4 115

17 135.3 147 177

31 187.4 0 230

2 18 40 70

15 63 63 81

*30 93 149 179

•13 149 149 179

32 170.1 0 230

5 20.6 24 32

14 54 54 62

16 75.1 75.1 91

6 103.1 103.1 119

33 -v 124.2 0 230

19 32 66 96

11 83 83 87

10 104.1 114 144

20 139.8 139.8 146

*1 166.2 166.2 181

*29 176.2 176.2 181

*28 176.2 176.2 181

*27 176.2 176.2 181

34 191.4 0 230

21 18 52 60

23 80 80 88

22 101.1 101.1 117

4 125.2 139 169 |

138

35 174 0 230

12 15 53 81.6

9 88.4 88.4 117

3 113.4 113.4 136

24 137.5 143 173

25 168 168 186

26 168 168 186

36 : -211.5: .I; 0 230

Table 33 - Optimal Tour Data for MANYR

The cost of the tour is lowered to 1058. The length of the tour is 211.5. The

optimal travel time of this tour is 780.5. Only 20 feasible tours were found out of

100 different tours examined.

MANYR using INIT did not find the optimal tour. The search progressed

much better than INIT did in solving nrl05. MANYR search found 15 feasible

tours out of the 100 different tours investigated. This is due to the added

structure provided by the transformation. The best feasible tour was found on the

31st iteration. This feasible solution is better than the infeasible solution found

for nrl05. The best travel time of this tour is 801.6.

Example #3. MANYM is a mixed problem modified from nrcl08 that has 4

suppliers supporting a single delivery location. To test the versatility of the code,

the route

12,14,17,16,15,13,9,11,10

139

is assigned the ordering

12 -17; 15 - 9; and 14,16,13,11 -10.

This places a node from the gPOS between each node from the two

pairwise-POSs. Dummy nodes 26 - 28 are added to model node 10.

All three procedures were able to find the optimal tour earlier in its search

for MANYM. NEW and NEWc required only 5 iterations instead of 16

iterations to find the optimal tour. EMIT found the optimal tour in 27 instead of

39 iterations. The resulting schedule for the second of the three routes in the

optimal tour is displayed in table 34. The optimal cost of the tour is 544.5. The

average time window length was over 38% of the planning horizon length. Thus,

there were a considerable number of feasible tours to be discovered. The NEW

procedures found better than 50% feasible tours while INIT found slightly less

than half of the tours feasible.

nodei arrival [i] departure[i] late[i]

...

12 32.3 32.3 148

14 45.3 45.3 144

17 60.3 60.3 189

16 75.3 75.3 141

15 87.3 87.3 134.6

18 103.1 103.1 144

9 118.1 118.1 154

11 133.4 133.4 149

140

*10 145.4 145.4 161

*26 155.4 155.4 161

*28 155.4 155.4 161

*27 155.4 155.4 161

31 187 0 240

...

* can be ordered many different ways.

Table 34 - Optimal Tour for MANYM

5.3 The Serial Precedence Model

The serial precedence scenario can also be modeled as a PDPTW by

mirroring all intermediary nodes. For example, require supplier 1 (SI) to visit

supplier 2 (S2) prior to visiting supplier 3 (S3) before their joint delivery to Dl.

This defines the precedence ordered subset (sPOS) SI -S2-S3-D1. The

transformation provides for a modified POS of SI - S2a - S2b - S3a - S3b - Dl.

The original input data structure is outlined in table 35.

node x< y< demand early late service pred succ

SI XS1 ySi dSi esi Is. SS1 0 S2

S2 XS2 yS2 dS2
eS2 *S2 SS2 SI S3

S3 XS3 yS3 dS3 eS3 1S3 SS3 S2 Dl

Dl XD1 yDi dDi eDl ID, SD1 S3 0

Table 35 - Initial input data for the serial precedence model

The structure is modified to establish the pairwise relationship in table 36.

141

node *,• y,- demand early late service pred succ

SI XS1 ySi dSi esi Is, ss, 0 S2a

S2a XS2 yS2 dS2 eS2 ls2 0 SI. 0

S2b XS2 yS2 0 eS2 ls2 SS2 0 S3a

S3a XS3 yS3 dss eS3 1S3 0 S3b 0

S3b XS3 yS3 0 eS3 1S3 SS3 0 Dl

Dl XD1 yD. dDi eDl ID, SD1 S3b 0

Table 36 - The transformed input data structure for the serial precedence model

This transformation would have to occur because the current SPI

neighborhood search scheme only accounts for pairs/two members in the search.

SPI would move a predecessor and its corresponding successor, but not the other

members of the POS creating coupling constraint violations. S2a is the original

supply node S2. S2b is the dummy node added to the data set.

It is possible for coupling constraints to be violated in the transformed

problem after the formation of the initial tour. However, the search process

would sort out this "hidden" violation and ensure that the serial precedence is

established. For example, lets say part of the initial tour is depicted below:

... D SI S2a D S2b S3a D S3b Dl D ... D S4 D4 D S5 D5 D ...

Combining the routes

... D SI S2a D S2b S3a S3b Dl D ... D S4 D4 D S5 D5 D ...

is more desirable than to combine the last two depicted routes

142

... D SI S2a D S2b S3a D S3b Dl D ... D S4 D4 S5 D5 D ...

because of the same rationale provided in section 5.1.

If at the end you do not find the POS SI - S2a - S2b - S3a - S3b - Dl on

the same route, the problem has no feasible solution. However, the "best tour"

generated by the algorithm could possibly reveal the POS on the same route if the

time windows violations are tolerable and generate the rninimum travel time.

Example #1. The first example modifies clustered problem ncl05 by modifying

the precedence for route 3 (**) below. The optimal ordering for the route is

5,3, 7, 8,10,11,9,6,4,2,1 and 26.

This route is assigned the serial precedence of

5-3;7-8;10-ll;and9-6-4-2-l.

Nodes 9,6,4 and 2 are all supplying delivery node 1. Dummy nodes are

prepared for (6,26), (4,27) and (2,28).

NEW and NEWc also had the optimal tour for SERIAL1 as the initial

tour. The optimal travel time of this tour is 2441.3. INIT required 20 iterations

to find its best feasible tour with a travel time of 2465.2. The best solution that

INIT could find for the original problem instance had a travel time of 2483. INIT

performed better for this instance, again, because of the increased ordering

information. The optimal ordering for the modified route is depicted in table 37.

143

nodei arrival [i] departure[i] late[i]

... —

5 15.1 15.1 95

3 106.1 106.1 186

7 198.1 198.1 253

8 290.9 290.9 359

10 384.5 384.5 436

11 477.5 477.5 533

9 570.6 570.6 640

6 662.8 662.8 743

26 662.8 662.8 717.8

4 755 755 810

27 755 755 799.4

2 848.6 848.6 893

28 848.6 848.6 893

1 940.6 940.6 994

31 1,049.2 0 1,236

Table 37 - Optimal Tour Data for SERIAL1

Example #2. SERIAL2 modifies the radially dispersed problem nrl08. This

problem instance places part of the serial-POS between apairwise-POS. The

optimal ordering of the fourth route depicted in the table 38 below has the

ordering
2,15,14,16,17,5,6 and 13

The sPOS for this fourth route will place nodes 15 and 14 between node pair

(2,16). This creates the precedence ordering of

2-16; 15-14-17-5; and 6-13

144

with nodes 15,14 and 17 supplying delivery node 5. Dummy nodes (14,27) and

(17,28) were added to complete the transformation.

Both NEW and NEWc found the optimal solution after 13 iterations

where it required 56 and 196 iterations, respectively, for the original problem

instance. The additional structure provided by serial relationship aided in the

discovery of the optimal tour.

nodei arrivalfi] departure[i] late[i]

...

**2 18 18 154.9

15 41 51 81

27 76.8 76.8 156.7

14 86.8 86.8 187

16 97.9 97.9 190

28 119 119 179

17 129 129 189

5 139 139 199

6 159 159 162

13 176 176 179

32 197.1 o 230

Table 38 - Optimal Tour Data for Route 32 of SERIAL2

This problem illustrates one of the problems that may arise with this

transformation - multiple solutions. The ordering for route 4 may also be written

as
2,15,14,27,16,28,17,5,6,13.

145

The user needs to be familiar with the dummy nodes used to determine the actual

route being represented.

INIT required 34 iterations to find the optimal solution for SERIAL2.

INIT also found the optimal tour in less iterations for the modeled problem,

nrl08. This indicates that the marginally infeasible initial tour provided suitable

start point for the search to commence.

Example #3. SERIAL3 is a mixed radially dispersed and clustered problem

modified from nrcl05. This problem interposes the entire serial-POS between a

pairwise-T>OS. This problem instance was also selected because it generates

several infeasible tours with a lower objective value. The optimal solution's

fourth route is ordered

12,14,16,15,13 and 17

SERIAL3 imposes the precedence relationships

12-17 and 14-16-15-13.

where nodes 14,16, and 15 all supply delivery node 13. Dummy nodes for

(16,27) and (15,28) were added. The entire optimal tour is represented in table

39 for comparison with the infeasible tour discovered.

nodei arrival [i] departure[i] late[i]

0 0 0 240

11 33.5 69 79

9 84.3 101 111

146

10 116 123 144

26 123 123 144

30 164.6 o 240

2 30.8 30.8 139.9

5 50.9 50.9 160

3 62.9 64 178

1 77 77 191

8 98.1 101 107.2

6 116.8 116.8 123

7 129.8 129.8 144

4 146.8 151 161

33 197 0 240

19 40 58 68.6

23 74.4 75 85

18 91 91 98.3

22 111.7 111.7 119

20 123.7 123.7 144.9

21 143.8 143.8 165

25 158.8 171 173.6

24 191.4 191.4 194

40 236.4 0 240

**12 32.3 32.3 152

14 45.3 45.3 97

16 62.3 62.3 114

27 62.3 62.3 66

15 74.3 74.3 78

28 74.3 74.3 78

13 90.1 152 162

17 173.1 173.1 180

223.4 !^*^ 240

Table 39 - Optimal Tour Results for SERIAL3

147

NEW and NEWc both found the optimal tour on the sixth iteration, compared to

the 7 and 60 iterations required for the original problem instance. The cost of the

tour is 821 with a corresponding travel time of 661.3. There is a relatively large

amount of time that drivers must wait in this problem, 159.7 units. This problem

structure provides the opportunity for infeasible tours with reduced total travel

times. The customers on the first route in table 40 are inserted on other routes.

The search also finds the same super-optimal tour generated by problem nrcl05.

The best overall travel time tour was found on the 114th iteration. Again,

infeasible tours are found during the second half of the search. Vehicle

reduction to an infeasible tour is not permitted until half the search is completed.

The best overall tour for 3 vehicles is displayed in table 40.

nodei arrival[i] departure[i] late[i]

0 0 0 240

2 30.8 30.8 139.9

5 50.9 50.9 160

3 62.9 64 178

1 77 77 191

8 98.1 101 107.2

6 116.8 116.8 123

7 129.8 129.8 144

4 146.8 151 161

33 ^197 ;W; 0 240

,9 40 58 68.6
1 II

148

23 74.4 75 85

18 91 91 98.3

22 111.7 111.7 119

20 123.7 123.7 144.9

21 143.8 143.8 165

25 158.8 171 173.6

24 191.4 191.4 194

40 236,4 0 ;■: 240

12 32.3 32.3 152

14 45.3 45.3 97

27 62.3 62.3 66

16 72.3 72.3 114

15 74.3 74.3 78

28 74.3 74.3 78

11 90.3 90.3 79.0*

9 105.6 105.6 111

10 120.6 123 144

26 123 123 144

13 140 152 162

17 173.1 173.1 180

41 223.4 0 240

Table 40 - Infeasible Tour Results for SERIAL3

The tour cost is further reduced to 656.8 and the corresponding travel time is

603.4. The time windows violation is only 11.3 units for one customer. This

search also found three workable tours with better travel times than the optimal.

the search found a total of 91 feasible tours out of 200 different tours. These

feasible tours were all found during the first half of the search. The second half

149

of the search explored infeasible solutions. There does not exist a feasible

solution for three vehicles. Once a vehicle has been eliminated during the search,

it is never returned.

SERIAL3 using INIT found the optimal tour on the 96th iteration and the

best tour on the 114th iteration.

5.4 Conclusions

Despite the fact that the transformations enlarge the problem, the

transformations provide added definition to the problem instances helping the

search determine the optimal tour. This increased knowledge about the ordering

of the customers even helped INIT find feasible solutions and optimal tours in

problems that it routinely had difficulty finding feasible tours and the optimal

solution.

The three scenarios provided can be combined and modified to handle the

most generalized of precedence scenarios. For example, given three suppliers

supporting three delivery locations in the following manner:

a. supplier, SI, supplies customer Dl,

b. suppliers SI and S3 supply customer D2 and S3 must be visited after
SI, and

c. suppliers S2 and S3 supply customer D3.

The corresponding input data structure is shown in table 19 where

150

'Ljdsi + 'EidDi = 0.

node X< y* demand early late service pred succ

SI XS1 y« dSi esi Is. SS1 0 DlorS

Dl XD1 yDi -dm eDl ID, SD1 SI 0

S2 XS2 yS2 ds2 eS2 Is2 SS2 0 D3

D2 XD2 yD2 -<*D2 eD2 1D2 SD2 S3 0

S3 XS3 yS3 dS3
eS3 1S3 SS3 SI D2orD

D3 XD3 yD3 -dD3 ^3 ^D3 SD3 S2 or S3 0

Table 41 - Input Data for Generalized Scenario

With the addition of four dummy nodes, this generalized scenario can be

transformed into a PDPTW. The transformed data set would be

node x* yj demand early late service pred succ

SI XS1 ySi dsi esi Is, SS1 0 Dl

Sla XS1 ysi 0 esi ls, 0 0 S3

Dl XD1 yD] -dDI ^1 ID, SD1 SI 0

S2 XS2 yS2 dS2 eS2 1S2 SS2 0 D3

D2 XD2 yD2 -dD2 eD2 1D2 SD2 S3 0

S3 XS3 yS3 dS3
eS3 1S3 SS3 Sla 0

S3a XS3 yS3 0 eS3 1S3 0 0 D2

S3b XS3 yS3 0 eS3 1S3 0 0 D3a

D3

D3a

XD3

XD3

yD3

yD3

-dD3

0

eD3

eD3

1»

1»

SD3

0

S2

S3b

0

0

Table 42 - The Transformed Input Data Set

which establishes the pairwise precedence of

SI - Dl; Sla - S3; S3a - D2; S2 - D3; and S3b - D3a.

151

To convert to the transformed state, add an additional node if the original node

has been used ensuring that the dummy node places no additional demand or

service time on the problem.

152

Chapter 6

Areas for Further Research and Summary

6.1 Areas for Further Investigation

Several concerns arose during the course of this research. Each of these

issues could use the algorithms developed during this research as a foundation

to build upon, modify and improve. Despite the computational success of the

NEW algorithms, most of these concerns are geared towards improving the

efficiency and solution quality.

The efficiency and quality of algorithms can be greatly enhanced by using

intelligent procedures for isolating effective candidate moves, rather than trying

to evaluate every possible move in a current neighborhood of alternatives. This

is particularly true when such a neighborhood is large and "expensive" to

examine. Several areas relating to this issue can be studied.

The first area centers on identifying solutions and updating results from

prior iterations. The two-level open hashing structure has proven to be an

effective means for identifying and updating solutions efficiently for vehicle

routing problems. Alternate measures can be investigated for saving and

updating evaluations from previous iterations for the PDPTW which would

reduce the overall computational effort. Savings earned can be devoted to higher

level features of reactive tabu search.

153

The NEWc algorithm used a very basic candidate list strategy by

accepting the first improving move encountered. Plus, each search neighborhood

employed its own respective candidate lists to limit and expedite the search.

Considerable benefits can result by employing alternate candidate list strategies.

Knowledge of some fundamental candidate list approaches, for example, a

sequential fan candidate list strategy or vocabulary building, could prove

beneficial (refer to Glover 1995 and 1996).

The effective integration of candidate list strategies with the reactive tabu

search memory designs will facilitate functions to be performed by the candidate

lists. This applies especially to the use of frequency based memory. Recency

based memory generates the history of the search and alters the tabu criteria

based on the quality of the search path. Frequency based memory - which itself

takes different forms in intensification and diversification phases - can not only

have a dramatic impact on the performance of the search in general, but also can

often yield gains in the design of candidate list procedures. Intensification

strategies are based on recording and exploiting elite solutions. Two forms of

intensification were employed in the algorithms used in this research. The first

intensification strategy used was the within route insertion (WRI) neighborhood

search strategy. WRI is invoked after each iteration of single pairwise-POS

insertion (SPI). The SPI neighborhood search scheme has the greatest potential

154

for reducing the total travel time for the tour. The other intensification strategy

employed returned the search to an elite solution at a fixed point in the search if

an attractor basin had not been encountered. The NEW algorithms routinely

found its best results early in the search. It could prove more beneficial to restart

the search at an elite solution after so many stagnant iterations instead of waiting

until reaching a fixed point. Other intensification approaches exist and may be

incorporated into this research, for example, recovering elite solutions in some

order. Other intensification approaches are outlined in Glover (1996,43-45).

Diversification approaches depend on a purposeful blend of memory and

strategy. Both recency and frequency based memory are important for

diversification. Diversification is invoked in this research when too many

solutions are visited within a certain span of iterations. The swap pairs

neighborhood search scheme is used to catapult the search into another region of

the solution space. The number of successive iterations of the swap pairs

neighborhood used is based on the problem size and the number of routes within

the tour. Other, more effective diversification approaches may consist of making

a number of random moves proportional to a moving average of the cycle length.

The hierarchical approach, the multineighborhood strategic search

methodology, is one method of employing the three neighborhood search

strategies used in this research. Other neighborhood strategies may be

155

incorporated or new strategies to oscillate between the search neighborhoods

invoked. For example, the swap pairs search neighborhood is executed if

diversification is required or the SPI search neighborhood is locked out of any

moves due to the presence of tight time windows. The swap pairs search

neighborhood may be systematically implemented based on the average time

window length (atwl) and the frequency memory strategy. When the atwl is

small, the time windows are tight. Systematically calling the swap pairs

neighborhood search routine will provide minor alterations to the makeup of the

tour and assist in producing a quality search path. If the atwl is large, the swap

pairs search neighborhood does not need to be called due to the large number of

feasible solutions. The swap pairs neighborhood search routine would only be

called when diversification is needed. However, if too many repeat solutions are

being revisited too quickly, the swap pairs search neighborhood could be called

to attempt to alter the search trajectory. This could help overcome the attraction

of the chaotic attraction basin.

The final area of concern is to seek methods of expediting the SPI search

process. This 0(n3) neighborhood search routine is vital to determining the

number of routes in the tour. The strength of SPI also resides in its ability to

investigate potentially workable infeasible solutions. Improved coding efficiency

would have to balance speed with SPI's ability to examine infeasible tours.

156

6.2 Extensions to this Research

The previous section discusses areas of concern that could be investigated

for solving the PDPTW. This section discusses new areas for research that the

NEW algorithm may be used as a basis for attack and presents further vehicle

routing problems for investigation.

Solomon's VRPTW benchmark data sets were exploited for use with

precedence constrained routing problems with time windows (PCRPTW) because

no defined data sets existed for the PCRPTW or the PDPTW. A more extensive

benchmark set of data needs to be generated, first for testing the PDPTW. Minor

modifications to the PDPTW data sets can be made for testing the PCRPTW.

Solomon's benchmark data sets do not bring vehicle capacity constraints into

consideration. Therefore, the new problems generated should provide for all

combinations of loose and tight capacity and time window constraints. Also, the

problems should address a wider variety of customers, with vehicle restrictions,

and number of required and available vehicles. After the problems are generated,

the NEW algorithms could be used to test the problems' feasibility and create a

set of best known solutions and tours.

The next primary area for potential extension is developing procedures to

attack more general PDPTWs. An example of constraints to be included are

route length restrictions which are not contingent upon time. Other

157

generalizations would definitely include non-homogeneous vehicles, vehicles

with both weight and volume restrictions, multiple depot problems and alternate

and hierarchical objective functions. For example, there are many possible

characteristics which cause vehicles to be different. Vehicles could be segregated

into a number of different vehicle categories. In this research, the type, variable

was used the classify the node as either a customer node, type 1, or a vehicle

node, type 2 (refer to section 3.4). This definition can easily be extended with

type, = 1 still being the customer node and type, = / for t = 2 to m+l allowing for

m different types of vehicles. The time it takes the vehicles to travel between

customers may vary. A unique time-distance matrix would have to be generated

for each vehicle class. The travel time from customer i to customer 7 on a vehicle

in class k would then be tiJk. This value would be used to compute appropriate

move values and schedule parameters. Vehicle capacities, by weight and

volume, may be input as an array for each vehicle type. This array could be

referenced by either the vehicle identification number, Veh(, or the vehicle type,

type,, as discussed earlier. This array would be passed to the function for

computing penalties without significant changes in the computer code.
*

This research investigated a static or advanced request problem where

the requirements are completely specified beforehand. This situation corresponds

to routine support required for a system or a physical system which requires

158

customers to request service long enough in advance so that vehicles routes are

completely determined before departing the depot. No further requests for service

are accepted after the vehicles are dispatched. A dynamic problem, on the other

hand, allows customers to request service after the vehicles are dispatched. The

dynamic problem presents a more realistic approach to picking up and delivering

supplies. Many requests are not known a priori. Rush orders are placed with

customers all the time. Knowing the slack or waiting time inherent in all routes

coupled with the average time window length (atwl) will aid the dispatcher in

assigning the new request to a route. If the atwl is small, the time windows are

tight for a higher percentage of customers being serviced. In general, the

potential exists for drivers to spend a better portion of their schedule waiting to

pickup the supplies and/or make the requisite delivery. A subroutine could be

prepared to determine if the request could be handled by the available slack time

in a route. An alternate subroutine would have to be developed if the atwl is

large. If the atwl is large, the time windows are not that constraining for the

customers being serviced. In general, the amount of slack time available is not as

great. However, there exists greater flexibility to meet the demands of the

customer due to the larger time windows. Thus, the subroutine could evaluate

each route separately to determine if enough flexibility is available in the

remaining schedule of a route to add the request. This dispatcher could then

159

forward the request to the driver on the route that minimizes the overall travel

time added to the route.

The final area to explore is vehicle routing problems that allows a vehicle

multiple routes during a single planning horizon. If the planning horizon is long

and the number of vehicles available small, it could prove beneficial to allow the

vehicles to leave and return to the depot several times during the planning

horizon. Depot/vehicle nodes could be dynamically assigned to reflect the return

of the vehicle to the depot, an appropriate amount of waiting/service time before

the vehicle is permitted to leave for pickups and deliveries. A possible

methodology for attacking this type of problem would be to initially divide up

the planning horizon into segments representing the maximum number of routes

a vehicle can complete within a planning horizon. The algorithm could be used

to generate routes that satisfy this initial configuration. The next "phase" would

find moves that decrease the overall travel time. Vehicle node early arrival and

late departure times would be adjusted accordingly. Moves could be first

considered between routes for the same vehicle and then between vehicles.

6.3 Major Contributions of this Research

This research makes several major contributions to the understanding and

extension of knowledge in solving precedence constrained routing problems with

time windows. This research also attempted to incorporate the concerns of

160

Glover (1996) and Battiti (1995) in employing (reactive) tabu search

methodologies in solving vehicle routing problems. This research shows how to

exploit dominant constraints to motivate the type of neighborhood search

strategies utilized. Once identifying applicable search strategies, this research

employs a multineighborhood strategic search methodology showing how to

integrate the search neighborhoods into an effective hierarchical search scheme.

Additionally, this research shows how to effectively adapt reactive tabu search

methodologies, coupled with the multineighborhood strategic search

methodology, to solve PDPTW.

The algorithms generated for this research successfully solved the

PDPTW. The Solomon benchmark VRPTW data sets were modified to conform

to the PDPTW data structure required, and, in the process, creating PDPTW

benchmark data based on Solomon's benchmark data sets.

Several variants of the PCRPTW were presented - single supplier

supporting several delivery locations, several suppliers supporting a single

delivery location and serial precedence. This research showed how to transform

these generalized precedent variants into the PDPTW.

This research identified difficulties in employing reactive tabu search.

Simple confinements of the search trajectory can be cycles, an endless repetition

of a sequence of solutions during the search. However, confinements can be

161

more complex trajectories with no clear periodicity but restricts the search to a

limited portion of the solution space. This is what Battiti (1995) identifies as a

chaotic attractor basin. The search does not want to expend too much effort

attempting to overcome an attractor basin. The search wants to be identifying

new solutions in an attempt to find optimal and infeasible tours that may further

reduce the total travel time. The research discussed how to identify being caught

in an attractor basin and illustrated one method for escaping the effects of the

attractor basin. Successive iterations of the swap pairs search neighborhood were

performed to alter the makeup of the routes and move the search in other regions

of the solution space.

The algorithms employed traverse infeasible regions of the solution space

in order to discover excellent solutions which might not otherwise be connected

to the starting solution if the search neighborhoods were restricted to feasible

solutions. In fact, the exploration of infeasible solutions is encouraged. The

purpose of the search process is not only to find a solution that satisfies all

constraints, but also to find infeasible tours that are viable and may further reduce

the tour's total travel time.

6.4 Summary

This investigation has presented an effective reactive tabu search

approach for solving precedence constrained routing problems with time

162

windows. This effort primarily focused on solving the PDPTW and show how to

transform the more complicated PCRPTW into a solvable PDPTW.

The computational results show the procedures to be efficient, producing

solutions in an order of magnitude faster than the best known optimal approaches

and heuristic approaches for the VRPTW. The solutions generated often match

the optimaVbest solution, especially when the optimal schedule for the VRPTW

was known. The search process identified infeasible tours that lowered the

objective value. These tours further decrease the total travel time by slightly

violating time window constraints. Some of these time windows violations can

best be explained to the customer as the vehicle "got caught in traffic".

Significant time windows violations can be negotiated with the customer. Thus,

both the customer and the distributor gain additional savings.

Despite the broad spectrum of VRPs that have been identified and solved

during this research, data obtained from the Defense Logistics Agency (DLA)

indicated future needs for research as outlined in this chapter.

163

APPENDIX A

Data Sets Examined

The data sets examined for comparison in this research are the 25-, 50-

and 100-customer problem instances that the team of Desrochers, Desrosiers and

Solomon (1992) were able to optimally solve using their optimal algorithm. The

optimal algorithm produces optimum solutions for all twenty-nine, 25-customer

problems, fourteen of the 50-customer problems and seven of the 100-customer

problems. A synopsis of their procedure is outlined below.

The linear programming (LP) relaxation of the set partitioning

formulation of the VRPTW is solved by column generation. Feasible columns

are added as needed by solving a shortest path problem with time windows and

capacity constraints using dynamic programming. The LP solution obtained

generally provides an excellent lower bound that is used in a branch-and-bound

algorithm to solve the integer set partitioning formulation. Desrochers,

Desrosiers and Solomon treat the case where if a vehicle arrives prior to the early

time window boundary at a location, the vehicle will wait. Late time window

boundaries cannot be violated. The "homogeneous" fleet size is determined

simultaneously with the best sets of routes and schedules rather than being fixed

a priori. Each customer is serviced exactly once.

164

In order to use their pulling algorithm, the authors provide a definition for

lexicographic ordering based on the capacity needed at the node and the time to

get to the node. The authors use this pulling algorithm to generate negative

marginal cost columns. When no more of these columns can be generated, the

simplex algorithm provides the optimal solution of the linear relaxation of the set

covering type model. If the solution is integer, it is also optimal. Regardless of

the integrality of the solution, abranch-and-bound strategy is used to solve the

integer set partitioning formulation.

The authors use three of the six benchmark problem sets generated by

Solomon; rl, cl and rcl. These problems have a short scheduling horizon and

vehicle capacity is not a serious consideration. Computational results are

provided for all variants of the problems. It proved capable of solving the

following problems exactly:

25-customers: all twenty-nine problem instances.

Clustered: clOl - cl09,
Radially dispersed: rlOl - rll2, and
Mixed: rcl01-rcl08.

50-customers: fourteen of the twenty-nine problem instances.

Clustered: clOl, cl02, cl03, cl05, cl06, cl07 and cl08.
Radially dispersed: rlOl, rl02, rl03, rl05, rl06, rl07 and rl 10.

165

100-customers: seven of the twenty-nine problem instances.

Clustered: clOl, cl02, cl06, cl07 and cl08.
Radially dispersed: rlOl and rl02.

Kohl (1995) purports to solve 70 of the 87 benchmark problems to

optimality. Knowing the number of routes in the tour for of the optimal solution

enabled the scope of the problems investigated to be expanded. Carlton's RTS

algorithm was used to try to identify the optimal solution or a solution with the

same number of routes.

Kohl's method exploits Lagrangian relaxation of the constraint set

requiring that all customers must be serviced. Kohl decomposes the VRPTW

into a master problem and a shortest path problem, much like the Dantzig-Wolfe

decomposition, but the way the dual variables or Lagrangian multipliers are

optimized is new. The master problem finds the optimal Lagrangian multipliers

by using a method exploiting the benefits of subgradient methods as well as a

bundle method. The subproblem is a shortest path problem with time window

and capacity constraints (SPPTW). The method was implemented on the

Solomon benchmark problems of size up to 100-customers. The algorithm

proved to very competitive and succeeded in solving several previously unsolved

problems. The problems optimally solved are provided below.

25-customers: all twenty-nine problem instances.

166

50-customers: twenty-seven of the twenty-nine problem instances.

Clustered: all nine problems, cl01 -cl09.
Radially dispersed: ten of twelve problems, except rl08 and rl 12.
Mixed: all eight problems, rclOl - rcl08.

100-customers: fourteen of the twenty-nine problem instances.

Clustered: all nine problems, clOl - cl09.
Radially dispersed: r 101, r 102 and r 105.
Mixed: rclOl andrcl05.

167

APPENDIX B

Example of the Modified Data Structure

The first table in this appendix presents the data structure for Solomon's

radially dispersed, rl 10,25-customer VRPTW. The first two columns present

the (x, y) coordinate location of the customer. The third column refers to the

demand of the customer. For the VRPTW this refers to either all customers

receiving goods or all customers providing goods for whatever measure is being

used, i.e., by weight or volume. The fourth and fifth columns are the time

windows for the customers, reflecting when the customer wants the product

delivered or picked up. The final column tells how long it will take to load or

unload the supplies at each location. The first row in the table provides the

information for the depot node. All vehicle nodes are modeled after this depot

node. The late arrival time for the depot provides the planning horizon.

Table B.2 shows the changes and additions that had to be made to convert

the VRPTW to a PDPTW problem instance. The first six columns provide the

same information with one notable change. The demand data has been changed

to reflect whether the demand will be added to the total load of the vehicle (+) or

removed from the total load of the vehicle (-). Plus, the demand values have

been altered to thepairwise-VOS. The supplier has a positive demand d and the

corresponding delivery location has the negative demand -d. The seventh

168

column identifies if there is a predecessor node and who that predecessor node is.

The eighth column identifies if there is a successor node and who that successor

node is. If the predecessor column contains a nonzero entry, the corresponding

entry in the eighth column will be zero. This situation indicates that the customer

is a successor or delivery node. The final observation to make occurs in row 10.

The service time in row 10 has been zeroed out. This customer, node 9, was the

last customer in a route with an odd number of customers for the VRPTW. The

last row in table B.2 is a dummy node modeled after node 9. The dummy node

contains the service time for node 9. This dummy node serves as the delivery

node and successor to node 9 establishing the node pair (9,26) as a

pairwise-POS.

The optimal tour for rl 10, which satisfies the imposed precedence and

coupling constraints, is provided in table B.3. The optimal tour

requires 5 vehicles with a total travel time of 694.1 units. The vehicle nodes

delineating the ending of the routes are highlighted. The vehicle nodes are

modeled after the depot node and reflect when the vehicle returns to the depot.

The largest return time, 202.6 for vehicle 28, is the tour makespan.

169

Node x[i] yfi] demand

early

arrival

time

late

arrival

time

service

time

Depot 35 35 0 0 230 0

1 41 49 10 130 201 10

2 35 17 7 20 89 10

3 55 45 13 106 135 10

4 55 20 19 71 195 10

5 15 30 26 20 107 10

6 25 30 3 54 153 10

7 20 50 5 66 105 10

8 10 43 9 61 138 10

9 55 60 16 53 150 10

10 30 60 16 101 156 10

11 20 65 12 33 152 10

12 50 35 19 38 97 10

13 30 25 23 70 208 10

14 15 10 20 32 137 10

15 30 5 8 30 154 10

16 10 20 19 54 105 10

17 5 30 2 51 189 10

18 20 40 12 77 106 10

19 15 60 17 53 108 10

20 45 65 9 109 152 10

21 45 20 11 37 96 10

22 45 10 18 59 144 10

23 55 5 29 36 155 10

24 65 35 3 118 190 10

25 65 20 6 47 186 10

Table B.l - Original Solomon Data for 25-customer rl 10.

170

Node x[i] y[i]

demand

+ pickup
- deliver

early

arrival

time

late

arrival

time

service

time

pred[i] succ [i]

Depot 35 35 0 0 230 0 0 0
1 41 49 -19 130 201 10 20 0
2 35 17 17 20 89 10 0 15
3 55 45 -19 106 135 10 12 0
4 55 20 19 71 195 10 0 24

5 15 30 -12 20 107 10 18 0

6 25 30 23 54 153 10 0 13
7 20 50 15 66 105 10 0 19
8 10 43 -22 61 138 10 17 0
9 55 60 16 53 150 0 0 26
10 30 60 -16 101 156 10 11 0
11 20 65 16 33 152 10 0 10
12 50 35 19 38 97 10 0 3
13 30 25 -23 70 208 10 6 0
14 15 10 20 32 137 10 0 16
15 30 5 -17 30 154 10 2 0
16 10 20 -20 54 105 10 14 0
17 5 30 22 51 189 10 0 8
18 20 40 12 77 106 10 0 5

19 15 60 -15 53 108 10 7 0

20 45 65 19 109 152 10 0 1

21 45 20 18 37 96 10 0 22

22 45 10 -18 59 144 10 21 0

23 55 5 29 36 155 10 0 25

24 65 35 -19 118 190 10 4 0

25 65 20 -29 47 186 10 23 0

26 55 60 -16 53 150 10 9 0

Table B.2 - Modified Data Structure for PDPTW - nrl 10.

171

nodei arr[i] dep[i] l[i]

21 18 37 96
22 57 59 144
23 80.1 80.1 155
4 105.1 105.1 195
25 125.1 125.1 165
24 150.1 150.1 190
27 190.1 0 230
7 21.2 66 86.9

19 87.1 87.1 108
11 104.1 104.1 134.9

10 125.2 125.2 156
20 151 151 152
1 177.4 177.4 201
28 202.6 0 230
12 15 38 97
3 59.1 106 135
9 131 131 150
26 131 131 150
29 173 0 230
2 18 20 89
15 43 43 154
14 68.8 68.8 83.9

16 89.9 89.9 105
17 111 111 114.1

8 134.9 134.9 138
30 171.1 0 230
18 15.8 77 85.9

5 98.1 98.1 107
6 118.1 118.1 153
13 135.1 135.1 208

.-■ '. 31; ■'".:•; 156.2 0 230

Table B.3 - Optimal Tour for nrl 10

172

APPENDIX C

The Code for the PDPTW Algorithm

/*NEW.CforPC7
/* Updated 10/12/97. This uses BUILD_TOUR to generate a feasible initial tour. It accounts for
getting caught in a chaotic attractor basin. If it gets caught in an attractor basin, it diversifies
using swap_pairs. If it gets caught twice, it restarts the whole search process at the best tour and
reinitializes the search parameters.*/

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <limits.h>
#include <string.h>
#include <time.h>

#define MAXPBM 20 /* The longest problem name allowed.*/
#defme max(a, b) ((a>b) ? (a): (b))
#define min(a, b) ((a<b) ? (a): (b))

/* Function prototypes. */
void main(void);
void input_fn(char *);
void input_vpen(double *pvpen);
struct hashlist *lookfor(long, unsigned long, long, long, int, long);
void notfound(int *tl, int *ss, float mavw, FILE *ofp);
void found(struct hashlist *ptr, int *tl, int *ss, float *ma, int k, FILE *ofp);
void makespan (int, struct node *, long *, int *);
int count_vehs(int, struct node *);
void print_tour(struct node *t, int n, FILE *ofp);
void print_sched(struct node *t, int n, FILE *ofp);
void keep_bfs(int, struct node *, long, long, struct node *, long *, long *, int *, int,

clock_t,double *);
void twredol(int nnodes, struct node *tour, int **time, FILE *ofp);
void print_tws(int n, struct node *t, FILE *ofp);
void inputjpbm (int nc, int nv, int g, struct node *t, int **ti, FILE *ifp, FILE *ofp);
void convxy(int nc, int nv, int gamma, float *x, float *y, float *s, int *pr, int *su, int **ti, FILE

*ofp);
float *t_search(FILE *ifp, FILE *ofp, int niters, double TWPEN, int g, double VPEN, mt CAP,

char INFILE);
int move_delta (int, int, int, struct node *, struct node *, int **);
long toursched (int, int, struct node *, int **);
void comp_parpens (struct penalty *, int,struct node *, int);
void swap_node (int, int, struct node *);
struct node * insert (int, struct node *, int *, int, int);

173

long sum_wait(int, struct node *);
void iinsert(int, struct node *, int, int);
void build_tour(struct node *, int **, int, int, int);

void input_vpen(double *pvpen)

{
int i; /* Index */
char c, d; /* Characters to read y or n to change vpen */
double p; /* Dummy value for vpen for input */
printf("The current overload penalty is: %6.1f.\n", *pvpen);
printf("Do you want to change the value? <Y, N>\t");
c = getchar(); /* This captures any '\n' characters leftover */

for (i=0; (c = getchar()) != V; ++i)
d = c;
while (d!='N,&&d!=,n,){

printf("\nlnput the new overload penalty An");
scanf("%lf *, &p);
c = getchar(); /* This captures any '\n' characters leftover */
*pvpen = p;
printf("The current overload penalty is: %6.1f.\n", *pvpen);
printf("Do you want to change the value? <Y, N>\t");
for (i=0; (c = getchar()) != V; ++i) d = c;

} /* end while */
}/* end of the input vpen function */

/* Define values to examine in the solution structure */
#define HTSIZE 1009 /* The dimension of the hashing table */
/* REACTIVE SEARCH PARAMETER INITIALIZATIONS */
#define INCREASE 1.5 /* Should guarantee to increase tabu length by at least one */
#define DECREASE 0.95 /* Allows for any function to be inserted */
#define CYMAX 50 /* Allows for any function to be inserted */
#define SWAP(x, y, t) ((t) = (x), (x) = (y), (y) = (t))

typedef struct node { /* The data structure for a vehicle or "task" node.*/
/* Input data */

int id; /* The node number.*/
int e; /* The early time window.*/
int 1; /* The late time window.*/
int qty; /* The customer demand or 0.*/
int type; /* The node type: 1 => customer, 2 => vehicle.*/
int pred; /* The (vector) of node predecessors */
int succ; /* The (vector) of node successors */
int vehicle; /* Records the vehicle the customer node is on */

/* Schedule Variables */
long arr; /* The arrival time at the node.*/
long dep; /* The departure time from the node.*/

174

long wait; /* The waiting time at the node.*/
long load; /* The amount loaded on the vehicle at the node.*/

} NODE;

/* The structure for the penalty terms */
typedef struct penalty {/* The data structure for the penalty terms.*/

long tw; /* The total amount of TW violation for a tour.*/
long Id; /* The total amount of overload for a tour.*/

} PENALTY;
/* Again, precedence and coupling constraints are the dominant concerns. Each tour created will
have these constraints satisfied. */

/* The hashing structure */
struct hashlist {

unsigned long thval; /* The tour hashing value.*/
long cost; /* The cost of the tour.*/
long tvltime; /* The tour travel time.*/
long twpen; /* The tour's TW penalty value.*/
long loadpen; /* The tour's overload penalty value.*/
int lastfound; /* The iteration on which the tour was last visited.*/
int repeat; /* To record how many repeat visits were made to the tour */
struct hashlist *next; /* Pointer to the next item in the list.*/

} HASHLIST;

/* The hashing table is a vector of pointers to hashlist structures. */
struct hashlist *hashtbl[HTSIZE];

void twredol(int nnodes, struct node *tour, int **time, FILE *ofp)
/* Input parameters; Tour and schedule parameters */

int nnodes; /* the total number of modelled nodes.*/
int **time; /* the time (distance) matrix between nodes.*/
struct node *tour; /* defines a tour as a vector of node structs.*/
FILE *ofp; /* the pointer to the problem output file.*/

{
register int i; /* index for counting */

/* BEGIN THE PDPTW REDUCTION FUNCTION */

for (i=l; i <= nnodes; ++i) {
if (tour[i].pred !=0) tour[i].l = min(tour[i].l,tour[0].l - time[i][0]);

}
for (i=l; i <= nnodes; ++i) {

if (tour[i].succ !=0) tour[i].l = min(tour[i].l,tour[tour[i].succ].l - time[i][tour[i].succ]);

}
for (i=l; i <= nnodes; ++i) {

if (tour[i].succ !=0) tour[i].e = max(tour[i].e)tour[0].e + time[0][i]);

}

175

for (i=l; i <= nnodes; ++i) {
if (tour[i].pred !=0) tour[i].e = max(tour[i].e,tour[tour[i].pred].e + time[tour[i].pred][i]);

}
return;

} /* This ends the PDPTW reduction function. */

/************* Yjj^g function prints the time windows *******************/
void print_tws(int n, struct node *t, FILE *ofp)

struct node *t; /* The tour to be printed.*/
intn; /* The number of nodes in the tour.*/
FILE *ofp; /* The pointer to the problem output file.*/
int i; /* Index */

{
fprintf(ofp,"\nThe time windows are: \n\n");
fprmtf(ofp,,,%s%6s %7s %7s \n", " ", "node i", ne[i]", "l[i]");

for (i=0; i<n; ++i) {
fprintf(ofp,"%7d %7d %7d\n", t[i].id, t[i].e, t[i].l);

} /* end for */
fprintf(ofp,"\n");

} /*end of time window printing function.*/

/* This program converts an input file of (x,y) integer coordinates to a distance matrix ti(ij) for
an n node TSPTW, where n = number of nodes including the depot the program outputs the
matrix of INTEGERS ti(ij) to a designated time (distance) file for the Solomon set of problems.
The data is scaled by a factor of 10 and truncated. */

#include <math.h>
#define FACTOR 10.0 /* Multiplies TWs and t(ij) & s(i)'s to increase accuracy, yet use integer

computations.*/
#define TRAVEL 1.0

void input_pbm(int nc, int nv, int g, struct node *t, int **ti, FILE *ifp, FILE*ofp)

{
float *x, *y; /* The x, y coordinates of the customers and the depot.*/
float *ea, *la; /* The input vectors for the early and late TWs, respectively.*/
float *s; /* Service time.*/
int *d; /* Demand of customer i */
int *pr; /* list of suppliers or customers that must precede this location */
int *su; /* list of suppliers or deliveries that must succede this location */
int i; /* Index.*/
x = (float *)calloc(nc, sizeof(float));
y = (float *)calloc(nc, sizeof(float));
ea = (float *)calloc(nc, sizeof(float));
la = (float *)calloc(nc, sizeof(float));
d = (int *)calloc(nc, sizeof(int));
s = (float *)calloc(nc, sizeof(float));

176

pr = (int *)calloc(nc, sizeof(int));
su = (int *)calloc(nc, sizeof(int));

/* Input Depot and Customer data from the input file.*/

for(i=0;i<nc;++i) {
t[i].id = i;
t[i].type = l;

fscan^ifrj/'yof', &x[i]);
fscanf(ifp,"%f', &y[i]);
fscanfltifp/'o/od", &d[i]);
fscanf(ifp,"%f', &ea[i]);
fscanf(ifp,"%f', &la[i]);
fscanCtifp.'^/of', &s[i]);
fscanf(ifp,"%d", &pr[i]);
fscanf(ifp,"%d", &su[i]);

t[i].e = (int) (FACTOR)*ea[i];
t[i].l = (int) (FACTOR)*la[i];
t[i].qty = d[i]; /* this is + for a supplier; - for a delivery */
t[i].pred = pr[i];
t[i].succ = su[i];
t[i] .vehicle = nc+nv; /* initialize for use after build_tour */

}/* end for */
t[0].type = 2; /* reset the 0-depot to the correct type.*/

/* Initialize the remaining vehicle nodes to be the same as the depot node "Homogeneous" */
for (i = nc; i < nc+nv; ++i) {

t[i].id = i;
t[i].e = t[0].e;
t[i].l = t[0].l;
t[i].type = 2;
t[i].qty = t[0].qty;
t[i].pred = t[0].pred;
t[i].succ = t[0].succ;
t[i]. vehicle = i;

} /* end for */
free(ea);
free(la);
free(d);

convxy(nc, nv, g, x, y, s, pr, su, ti, ofp);

free(x);
free(y);
free(s);
free(pr);
free(su);
return;

} I* end input_pbm function */

177

void convxy(int nc, int nv, int gamma, float *x, float *y, float *s, int *pr, int *su,
int **ti, FILE *ofp)

/* int nc; The number of customers incl the depot.
int nv; The number of vehicles.
int gamma; The penalty value for using an add'l veh.
float *x, *y; The x,y coordinates of nodes.
float *s; Service time vector.
int *pr, *su; Node predecessor and successor arrays.
int **ti; The resulting time (distance) matrix.
FILE *ofp; The pointer to the problem output file.*/

{
int ij; /* Indices. */
double dx, dy; /* The difference between the respective x and y coordinates.*/
double power(); /* The power function prototype. */
int nn; /* Computes nnodes.*/

nn = nc + nv;
for (i=0; i<nn; ++i) /* Initialize the distance matrix. */

for 0=0; j<nn; ++j) ti[i][j] = 15000;

/* Account for 0's from depot-supply; delivery-depot */
for(j=l;j<nc;++j){

dx = x[0] - x[j];

dy = y[0]-yDl;
tf(prD] = 0) ti[0][j]= (int) (TRAVEL*FACTOR*(sqrt(dx*dx + dy*dy)));

/* Assume that the average rate of travel = 30 mph */
else ti[j][0]= (int) (TRAVEL*FACTOR*(sqrt(dx*dx + dy*dy)));

} /*endforj */

for (i=l; i<nc; ++i) /* Computation. */
for(j=i+l;j<nc;++j){

dx = x[i] - x[j];
dy = y[i]-y[j];
if(j!=su[i]){

ti[i]D] = (int) (TRAVEL*FACTOR*(sqrt(dx*dx + dy*dy)));
ti[j][i] = ti[i][j]; /* assumes time-distance symmetry */

}/*endif*/
else ti[i][j] = (int) (TRAVEL*FACTOR*(sqrt(dx*dx + dy*dy)));

}/*endforj*/
for(i=l;i<nc;++i)

for (j = nc; j < nc+nv; ++j) {
if (ti[0][i] != 15000) {

tiß][i]=ti[0][i];
ti[i][j]=15000;

}/*endif*/
else {
ti[j][i]=15000;

178

ti[i]D]=ti[i][0];
} /* end else */

} /* end for */

/* Add scaled service time to each distance vector.*/
for (i=0; i< nc; ++i)
for(j=0; j<nc+nv; ++j)

if (ti[i][j] != 15000) ti[i][j] +=(int) FACTOR*s[i];
/♦divide s[i] by two for "half s"*/

for (i=nc; i< nc+nv; ++i)
for(j=0; j< nc+nv; ++j)

ti[i][j] += (int) FACTOR*s[0];
/♦divide s[0] by two for "half s"*/
/* Complete the matrix by inputting the variable vehicle usage "cost."*/

for (i = nc; i < nn-1; ++i)
for (j=i+l; j<nn-l;++j)

ti[i][j] = ti[j][i] = gamma;
for (i = nc; i < nn-1; ++i)

ti[i][0] = ti[0][i] =ti[i][nn-l] = ti[nn-l][i] = gamma;
return;

}

/* A function to print the current tour. */
void print_tour(struct node *t, int n, FILE *ofp)

{
register int i; /* Index */
fprintf(ofp,"The tour is now:\n");
for (i=0; i < n; ++i)
fprintf(ofp,"%d ", t[i].id);
fprintf(ofp,"\n\n");
return;

} /* This is the end of the function. */

/* A function to print the schedule. */
void print_sched(struct node *t, int n, FILE *ofp)

{
register int i;/* Index */
fprintf(ofp,"\nThe resulting schedule is: \n\n");
fprintf(ofp,"%s%6s %7s %7s %7s \n"," ", "node i", "arr[i]", "dep[i]", "l[i]");
for (i= 0; i < n; ++i) {

fprintf(ofp,"%7d %7.1f %7.1f %7.1f, t[i].id, (float) t[i].arr/(float)
FACTOR, (float) t[i].dep/(float) FACTOR, (float) t[i].l/(float) FACTOR);

if (t[i].arr > t[i].l) fprintf(ofp,"*\n");
else fprintffafp.'W');

} /* end for */
fprintf(ofp,"\n"); }/*end of schedule printing function.*/

179

}
/* This is the function that retains the feasible solution that has the shortest travel time and with
the shortest travel time also has the shortest completion time, as well from among all tours
"found" in the TS routine. This is a much better routine than previous ones, too.*/

void keep_bfs(n, t, tc, tt, bft, pbftc, pbftt, pbfin, k, st, pbfti)
intn; /* The number of nodes in the tour.*/
NODE *t; /* The structure of the current feasible tour.*/
long tc; /* The current tour cost.*/
long tt; /* The current tour travel time.*/
NODE*bft; /* The struct for the best feasible tour.*/
long *pbftc; /* The pointer to the best feasible tour cost.*/
long *pbftt; /* The pointer to the best feasible travel time.*/
int *pbfin; /* The pointer to iteration number when bfs was found.*/
int k; /* The current iteration number.*/
clockt st; /* The time the algorithm started.*/
double *pbfti; /* Pointer to best feasible solution found time.*/

{
int i; /* Index.*/
long travel; /* The travel time for the current tour.*/
clockt solntime; /* The current time for the algorithm.*/
travel = tt;
solntime = clock();
if (travel > *pbftt) return;
if(travel<*pbftt){

*pbfti = ((solntime - st)/(double) CLOCKS_PER_SEC);
*pbftc = tc;
*pbftt = travel;
*pbfin = k;
for (i = 0; i < n; ++i) bft[i] = t[i];
return;

}/*end if travel < *pbftt.*/

if (travel = *pbftt && tc<*pbftc) {
*pbfti = ((solntime - st)/(double) CLOCKS_PER_SEC);
♦pbftc = tc;
*pbfin = k;
for (i = 0; i < n; ++i) bft[i] = t[i];
return;

}/*end if tour cost is equal.*/
return;

}/*end of keep_bfs function*/

/* This function is like the one above except it retains the feasible tour which uses the smallest
number of vehicles.*/

/* The following functions handling the open hasing structure */

180

/* This function looks for the current tour in the hashing structure; if the tour is found, the pointer
is returned, if not, the tour is added to the structure and a NULL pointer is returned.*/

struct hashlist *lookfor(tc, thv, twp, lp, k, tt)
longtc; /* The tour cost of the tour.*/
unsigned long thv; /* The hashing value of the tour.*/
long twp; /* The TW ^feasibility penalty for the tour.*/
long lp; /* The overload infeasibility penalty for the tour.*/
int k; /* The iteration number corresponding to the tour.*/
long tt; /* The tour travel time.*/

{
struct hashlist *hnp; /* The pointer to the new hashing tour position. */
struct hashlist *npl; /* The pointer to the last tour in the "tree."*/
unsigned hv; /* The hashvalue for the tour cost.*/
int hold;

hv = (unsigned) (tc % HTSIZE);
npl = NULL;

/* Look for the tour in the structure.If found, return the pointer.*/
for (hnp = hashtblfhv]; hnp != NULL; hnp= hnp->next) {

npl = hnp;
if (hnp->twpen = twp && hnp->loadpen = lp && hnp->thval = thv) {

hold = hnp->repeat;
hnp->repeat = hold+1;

return hnp;
}

}/* end for */
/* If not found, add the tour to the end of the structure.*/

hnp = (struct hashlist *)malloc(sizeof(HASHLIST));
if (npl = NULL) {

hnp->next = hashtblfhv];
hashtblfhv] = hnp;

}
else {

hnp->next = npl->next;
npl->next = hnp;

}/* end else */

hnp->twpen = twp;
hnp->cost = tc;
hnp->thval = thv;
hnp->lastfound = k;
hnp->repeat= 1;
hnp->tvltime = tt;
hnp->loadpen = lp;
return NULL;

} /* end function lookfor */

181

/* This function updates the search parameters if the incumbent tour is not found in the hashing
structure.*/

void notfound(int *tl, int *ss, float mavw, FILE *ofp) {
*ss+=l;

/* If the current tour is not in the hashing table, then decrease the value for the tabu_length only
if the number of steps since the last change is more than the current moving average .*/

if (*ss>mavw) {
*tl = max((int) (*tl)*DECREASE,5);
*ss = 0;

}/*endif*/
} /* end of function notfound */

/* This function updates the search parameters if the incumbent tour is found in the hashing
structure.*/

void found(struct hashlist *ptr, int *tl, int *ss, float *ma, int k, FILE *ofp)
struct hashlist *ptr; /* The pointer to the tour that was found.*/
int *tl; /* The pointer to the tabujength.*/
int *ss; /* The pointer to the ssltlch.*/
float *ma; /* The current value for the moving average.*/
int k; /* The current iteration count.*/
FILE *ofp; /* The pointer to the output file.*/

{
int cylength; /* The length of the current cycle.*/

/* This updates the parameters for the search and increases the tabulength if the cycle length is
less than the max allowable cycle length (CYMAX).*/

*ss+=l;
cylength = k - (ptr->lastfound);
ptr->lastfound = k;
if (cylength < CYMAX) {

*ma = .l*cylength + .9*(*ma);
*tl = min(2000, (int) (*tl)*INCREASE);
*ss = 0;

}/*endif*/
} /* end of function found */

/* This routine finds the maximum tour completion time for the algorithm. It also finds the
number of vehicles used within the tour. Any time the arrival time at a vehicle node is greater
than zero, a vehicle has been used; therefore, increase the number of vehicles used count and if
the arrival time is larger than any previous arrival time, it becomes the mission completion
(makespan).*/

void makespan(n, t, ct, vu)
int n; /* The number of modeled nodes in the tour.*/
NODE *t; /* The tour structure.*/

182

long *ct; /* The pointer to the completion time value.*/
int * vu; /* The pointer to the number of vehicles used. */

{
long zct = 0; /* The initial value for ZcT.*/
int nvu = 0; /* The initial value for number vehicles used. */
NODE *np; /* The index pointer to the tour structure.*/
NODE *lastnp; /* The index pointer to the last tour node.*/
lastnp = &t[n-l];
for (np = &t[l]; np <= lastnp; ++np) {

if (np->type = 1) continue; /* Skip all customer nodes.*/
if(np->arr>0) {

++nvu;
if (np->arr > zct) zct = np->arr;

}/* end if arrival at vehicle node is greater than zero.*/
}/* end for tour search.*/
*vu = nvu;
*ct = zct;
return;

}/*end makespan function.*/

/* This procedure counts the number of vehicles used and returns that integer.*/

int count_vehs(n, t)
int n; /* The number of modeled nodes.*/
NODE *t; /* The tour for counting.*/

{
int nvu = 0; /* The number of vehicles used by the input tour.*/
NODE *np; /* An index for traversing the tour.*/
NODE *lastnp; /* The last node pointer in the tour.*/
lastnp = &t[n-l];
for (np = &t[l]; np <= lastnp; ++np) {

if (np->type = 1) continue; /* Skip all customer nodes.*/
if(np->arr>0) ++nvu;

}/*end for tour search.*/
return nvu;

}/* End of the count vehicles function.*/
/ * The Tabu Search Routine */

floatt *t_search(FILE *ifp, FILE *ofp, int niters, double TWPEN, int g, double
VPEN, int CAP, char INFILE)

/* FILE *ifp; The pointer to the problem input file.*/
/* FILE *ofp; The pointer to the problem output file.*/
/* int niters; The number of iterations that the algorithm is allowed to run. */
/* double TWPEN; The penalty for TW ^feasibility.*/
/* int g; The penalty for additonal vehicle.*/
/* double VPEN; The penalty for overload infeasibility.*/

183

/* int CAP; The capacity for the vehicles in this pbm.*/
{
/* VARIABLES */

/* Program parameters: */
register int i, j, j2, d, d2; /* Indices for counting */
int k; /* k = iteration number */
int tempi; /* Temporary values used by the SWAP macro.*/
struct node temp2;

/* Input parameters: */
int numveh;
int nnodes; /* The total number of modelled nodes = numcust + numveh.*/
int **time; /* The time (distance) matrix between nodes.*/
int tabujength; /* The number of iterations that a move is declared tabu.*/
int depth; /* The depth of the insertion moves.*/

/* Tour and schedule parameters: */
struct node *tour; /* Defines a tour as a vector of node structs.*/

/* Tabu Search parameters: */
int **tabu_list; /* The tabu list matrix: does not allow node i to reverse a prior swap

move with node j.*/
struct node *oldtour; /* A pointer to a previous candidate tour.*/
struct node *oldtour2; /* A pointer to a previous candidate tour.*/
struct node *initial_tour;
long tour_length;

/* The length of the neighboring tour = arrival at the depot (n) for the move.*/
long moveval, move_val2;

/* The difference betweeen the candidate tour cost and the incumbent tour cost.*/
long tour_cost; /*The actual total cost of the move= tourlength + penalty.*/
long d_best; /* The smallest swap cost found among all neighbors.*/
int ch_i, chd, ch_spi; /* The tour positions that correspond to the best neighboring move

that is not tabu.*/
long pentt; /* The travel time + penalties for the incumbent tour.*/
long compltime; /* The completion time for the best tour.*/
long totwait; /* The total waiting time for the given tour. */
int feas_i; /* The index for the selected predecessor.*/
int feasd; /* The depth index for the successor move.*/
int feasspi; /* where predecessor is inserted before */
long d_bestf; /* The smallest swap cost found among all feasible neighbors.*/
long bestjt; /* The best travel time found so far, it includes the infeasibility penalties.*/
long pen_cost; /* The total penalty cost of the incumbent tour.*/
long tvl; /* The travel time for the incumbent tour.*/

/* Output parameters: */
struct node *best_tour; /* The tour that has the smallest overall cost.*/
long bestcost, iterno;/* The cost of the best tour and iteration on which it was discovered.*/
int numfeas; /* The number of feasible tours found during the search, including

uplicates.*/
long bt_pen_cost; /* The penalty cost of the best tour found.*/
float soln[15]; /* The solution values.*/

184

struct node *best_ftour; /* A node structure for the best feasible tour.*/
long bftourcost; /* The value of the best feasible tour cost.*/
long bftvltime; /* The smallest travel time for the best ftour.*/
int bfiter_no; /* The iter no when the bftour was found.*/
intnumdiff; /* The number of different solutions found.*/
long feascompl; /* The completion time of best feasible tour.*/
int num_veh_used; /* The number vehs used in the best tour. */
int num_feas_veh; /* The number vehs used in the best feas tour.*/
FILE *fpinit; /* The file pointer to "initial.out".*/

/* Variables for the PDPTW Application.*/
int numcust; /* The number of customers in the problem.includes the depot.*/
long load_cost; /* The penalized overload = VPEN*load_penalty*/
long twcost; /* The penalized time window lateness = TWPEN*time_penalty*/
long tot_penalty; /* The total, unpenalized ^feasibility of the incumbent tour =

time_penalty + load_penalty.*/
long tot_nbrpen; /* The total uncosted penalties of a nbr tour.*/
int vehicle_id = 0; /* Store id of current vehicle number in tour */
int *locx, *loctemp, *loctemp2;

/* locator arrays */
int *loc_initial;
int current_vehicle;
int same, restart = 0;
int q = 0, count = 0;
int first = 0, second = 0, third = 0;
int wricount = 0, spicount = 0, swapcount = 0;
int current = 0, next = 0, revisit = 0;

/* These are the needed structure variables.*/
PENALTY tourpen; /* The penalty structure for the current tour.*/
PENALTY nbrpen; /* The penalty structure for a neighbor tour.*/

/* Timing variables: */
clockt start, stop; /* Start and stop times of the TS algorithm */
double duration; /* duration = stop-start => total TS algoritm time */
clockt soln_time; /* The time the current solution is found.*/
clock_t initend; /* The time the initial solution is computed.*/
double besttime; /* The time the best solution is found.*/
double bestfjime; /* The time the best feasible soln is found.*/
double init_tirne; /* The computation time for the initial tour.*/

/* Hashing and reactive search control parameters.*/
float mavg; /* The moving average of the cycle length.*/
int ssltlch; /* The Steps Since the Last Tabu Length Change.*/
unsigned long tourhv; /*The hashing value of the current tour.*/
long *z; /* The vector of random numbers used to compute the hashing value of the tour. */
unsigned long h3t; /* The intermediate hashing value of the tour.*/
unsigned long zin; /* The values of the incoming tour hash function.*/

185

unsigned long zout; /* The values of the outgoing tour hash function.*/
struct hashlist *ptr; /* A pointer to a tour if it is found.*/
int esci, esc_d, escspi; /* The "escape values" if all moves are tabu.*/
long escbest; /* The objective value of the best of all moves.*/
long atwl; /* average time window length */
float HWB;
double HWB1;
double HWB2;

/♦Initial input values for search variables.*/
k = 0;
numfeas = 0;
iterno = 0;
bfiterno = 0;
numdiff = 0; bftour_cost = 999999;
bftvltime = 999999;
feas_compl = 999999;
numvehused = 0;
num_feas_veh = 0;

/* Input the data from a data file */
/* Input the number of customers from the input file, including the depot.*/

fscanf(ifp,"%d", &numcust);
++numcust; /* Increases numcust to incl the depot.*/

/•Determine the number of vehicles to be modeled. If no vehicles are input, or number of
vehicles is more than the number of customers then model one vehicle for each customer.*/

numveh = (numcust+l)/2;
nnodes = numcust + numveh; /* The total number of modeled nodes.*/

/* Lines to dynamically allocate memory for the problem vectors and matrices based on the
number of nodes actually in the problem. */

z = (long *)calloc(nnodes, sizeof(long));
tour = (struct node *)calloc(nnodes, sizeof(NODE));
initial_tour = (struct node *)calloc(nnodes, sizeof(NODE));
besttour = (struct node *)calloc(nnodes, sizeof(NODE));
best_ftour = (struct node *)calloc(nnodes, sizeof(NODE));
oldtour = (struct node *)calloc(nnodes, sizeof(NODE));
oldtour2 = (struct node *)calloc(nnodes, sizeof(NODE));
locx = (int *)calloc(nnodes, sizeof(int));
locinitial = (int *)calloc(nnodes, sizeof(int));
time = (int **)calloc(nnodes, sizeof(int *));
loctemp = (int *)calloc(nnodes, sizeof(int));
loctemp2 = (int *)calloc(nnodes, sizeof(int));
for (i=0; i < nnodes; ++i) time[i] = (int *)calloc(nnodes, sizeof)[int));
tabu_list = (int **)calloc(nnodes, sizeof(int *));
for (i=0; i < nnodes; ++i) tabu_list[i] = (int *)calloc(nnodes-l, sizeof(int));

186

input_pbm(numcust, numveh, g, tour, time, ifp, ofp);

/* Input the number of iterations, tabu length, and depth of search */
mavg = nnodes-2;
ssltlch = 0;
tabulength = min(30, nnodes-2);
depth = nnodes-2; /* Initialize the vector z[i] of random numbers.*/
srand(l);
for (i=0; i<numcust; ++i) {

HWBl=rand();
HWB2 = rand() ;
HWB = (float) (HWBl*HWB2/32768.0/32768.0) ;
HWB = (float) (HWB * 131072.0);
z[i] = (long)(HWB+1.0);

} /* The "new" way above avoids truncation problems
z[i] = 1 + (long) (131072.0*(rand()/(RAND_MAX+1.0)));*/

/* Assign the same random hash number to all "dummy" vehicle nodes.*/
for (i = numcust; i < nnodes; ++i) z[i] = z[0];

/* Initialize the hashing table to all NULL pointers.*/
for (i = 0; i<HTSIZE; ++i) hashtbl[i] = NULL;

/♦Conduct the time windows reduction for pairwise precedence.*/
twredol(nnodes, tour, time, ofp);
atwl = 0;
for (i = 1; i<numcust; ++i) atwl += tour[i].l - tour[i].e;
atwl = atwl/(numcust-l);
printf("The average time window length (after time windows reduction is

%ld\n", atwl);

/* DETERMINE INITIAL TOUR - Start Timing Here!*/
start = clock();

/* This computes the initial schedule for the initial tour, and stores the values in the node
structure & returns the total tour length excluding any penalty for infeasibility.*/

tour[0].arr = tour[0].e;
tour[0].dep = tour[0].e;/* Initialize starting values at the depot.*/
tour[0].wait = 0; /* These will never change for this model.*/
tour[0].load = 0;
build_tour(tour, time, numcust, nnodes, CAP);
numvehused = count_vehs(nnodes, tour);
nnodes = numcust+num_veh_used+l;

/* Determine and store where the nodes are located in the tour */
for (i = 0; i < nnodes; +-H) locx[tour[i].id] = i;

/* Determine the customer vehicle assignment */
for (i=nnodes-l; i > 0; —i) {

187

if(tour[i].type = 2) {
vehicleid = tour[i].id;
tour[i]. vehicle = vehicle_id;

}
if (tour[i] .type = 1) tour[i] .vehicle = vehicle_id;

}
/* Determine the time required to compute the initial tour */

init_end = clock();
inittime = (((double)init_end - (double)start)/(double)CLOCKS_PER_SEC);

/* Compute the length of the tour */
tour_length = tour_sched(l, nnodes, tour, time);

/* Calculate the initial ^feasibilities.*/
comp_parpens(&tourpen, nnodes, tour, CAP);
tot_penalty = tourpen.tw + tourpen.ld;
if(tot_penalty>0) {

fprintf(orp,"This starting tour is infeasible!\n");
bt_pen_cost = tot_penalty;

} /*Initialize the parameter.*/
else bt_pen_cost = 999999;

/* Compute the infeasibility costs.*/
twcost = TWPEN*tourpen.tw;
loadcost = VPEN*tourpen.ld;
pencost = twcost + loadcost;

/* Compute the intial tour values.*/
tour_cost = tourlength + pencost;
totwait = sum_wait(nnodes, tour);
pentt = tourcost - totwait;
tvl = pentt - pencost;

/* Retain the initial values as the best tour found values.*/
best_cost = pen_tt;
besttt = tvl;
best_time = 0.0;
bestftime = 999999.0;
for (i= 0; i< nnodes; ++i) best_tour[i] = tour[i];
fprintf(ofp,"The tour cost is %9.1f, the travel time is %9.1f.\n",

(float)(tour_cost/FACTOR), (float) (tvl/FACTOR));
/* Open, Print the initial tour data to file "initial.out", close the file.*/

fpinit = fopen("wbinit.out", "a");
/* Count the vehicles used, see file "makespan.h"*/

numvehused = count_vehs(nnodes, tour);
fprintf(fpinit," %6.1f %3d %6.2f\n", (double) tvl/FACTOR,num_veh_used, init_time);
fclose(fpinit);

/* Compute the hashing value for the initial tour.*/
h3t = 0;
for (i = 0; i < nnodes-1; ++i) h3t += z[tour[i].id]*z[tour[i+l].id];
tourhv = h3t;

188

/* The tabu search subroutine evaluates all insert neighbors and finds the best to change and
outputs a new tour and schedule at every iterations. */

for (i = 0; i< nnodes-1; ++i)
for (j = 0; j< nnodes-1; ++j) tabu_list[i][j] = 0;

/* Initialize tabu structure. */
fprintf(ofp,"\nTabu_length is %d and the Number of iterations is %d. \n", tabu_length, niters);
fprintf(ofp,,,The depth of the search is %d.\n", depth);
++k; /* Increment k */
if (tot_penalty = 0) keep_bfs(nnodes, tour, tour_cost, tvl, best_ftour, &bftour_cost,

&bftvl_time, &bfiter_no, k-1, start, &bestf_time);
while (k <= niters) {

prinrf("\r%d",k); fflush(stdout);

/* Look for the incumbent tour in the hashing structure. This is the effort to determine if any
tours are repeated and to adjust the tabulength accordingly.*/

ptr = lookfor(tour_cost, tourhv, tourpen.tw, tourpen.ld, k-1, tvl);
if (tot_penalty = 0 && ptr = NULL) -H-numfeas;
if (ptr = NULL) {

notfound(&tabu_length, &ssltlch, mavg, ofp);
-H-numdiff;

}
else {

found(ptr, &tabu_length, &ssltlch, &mavg, k, ofp);
if (ptr->repeat = 2) -H-revisit;

}
/* Reset the search parameters to initiate a new search.*/

d_best = esc_best = d_bestf = 999999;
chi = feasi = esci = 0;
chd = feasd = escd = 0;
chspi = feasspi = escspi = 0;
same = 0;

/* Perform the multineighborhood strategic search (hierarchical) methodology */
if (k = niters/2 && restart = 0) {
for (i = 0; i <= nnodes-1; ++i) {

tour[i] = best_tour[i];
locx[tour[i].id] = i;

}
numvehused = count_vehs(nnodes, tour);
mavg = nnodes-2;
ssltlch = 0;
tabulength = min(30, nnodes-2);
depth = nnodes-2;
for (i = 0; KHTSIZE; ++i) hashtbl[i] = NULL;
for (i = 0; i< nnodes-1; ++i)

for (j = 0; j< nnodes-1; ++j) tabu_list[i][j] = 0;

189

printf("\riForcing a restart at best tour.\n");
rprintf(orp,"\nForcmg a restart at best tour.\n");
revisit = 0;
current = 0;
q = 0;

}
if (revisit >= 10 && q = 0) { /* caught in an attractor basin */

++next;
if (next <= min(num_veh_used,numcust/10)) goto swap_pairs;
else if (next > min(num_veh_used,numcust/10)) {

printf("\nLocked in a chaotic attractor basin.\n");
fprintf(ofp,"\nLocked in a chaotic attractor basin.\n");
next = 0;
revisit = 0;
current = 1;

q=i;
restart = 1;

}
}
if (revisit >= 10 && q = 1) {

for (i = 0; i <= nnodes-1; ++i) {
tour[i] = best_tour[i];
locx[tour[i].id] = i;

}
num_veh_used = count_vehs(nnodes, tour);
mavg = nnodes-2;
ssltlch = 0;
tabulength = min(30, nnodes-2);

depth = nnodes-2;
for (i = 0; i<HTSIZE; ++i) hashtbl[i] = NULL;
for (i = 0; i< nnodes-1; ++i)

for (j = 0; j< nnodes-1; ++j) tabu_list[i][j] = 0;
revisit = 0;
current = 0;
q = 0;

}

if (tour[0].l/atwl <= 4) { /* many feasible solutions */
if (current = 0) {

++current;
goto SPI;

}
if(current<=numcust/10) {

++current;
goto WRI;

}

190

if (current >numcust/10) {
current = 1;
goto SPI;

}
}
if(tour[0].l/atwl>4) {

if (current = 0) {
-H-current;
goto SPI;

}
if (current <= numcust/25) {

++current;
goto WRI;

}
if (current > numcust/25) {

current = 1;
goto SPI;

}
}

/* The following candidate list looks for improvement within the respective routes only. */

/* Conduct LATER Within Route Insertions (WRI) */
WRI:
-H-wricount;
for (i=l; i< nnodes-2; ++i) {

if (tour[i].type = 2) continue; /* You are at a vehicle node */
if ((tour[i].id = locx[i] = i) && tour[i].type = 2) break;
for (j=0; j < nnodes ; ++j) {

oldtour[j] = tour[j];
loctemp[j] = locx[j];

}
for (d = 1; d <= depth; ++d) {

if (i+d = nnodes -1) break; /* end of tour */
if (tour[i]. vehicle != tour [i+d] .vehicle) break;

/* Not on the same route */
else {/* search along same route */

if (tour[i+d].pred = tour[i].id || tour[i].succ = tour[i+d].id || tour[i+d].e +
time[tour[i+d].id][tour[i].id]> tour[i].l) break;

/* Do not change a precedent viable pair or if the swap strongly violates time windows */
else {

SWAP(loctemp[oldtour[i+d-l].id], loctemp[oldtour[i+d].id], tempi);
swap_node(i+d-l, i+d, oldtour);
move_val = move_delta(i, d, nnodes, tour, oldtour, time);
comp_parpens(&nbrpen, nnodes, oldtour, CAP);
tot_nbrpen = nbrpen.tw + nbrpen.ld ;
move_val += TWPEN*(nbrpen.tw - tourpen.tw) + VPEN*(nbrpen.ld - tourpen.ld);

191

} /* end else */
if(tot_nbrpen = 0) {

/* If totnbrpen = 0 => feasible neighbor tour.*/
if (move_val < d_bestf) {

if (k > tabu_list[tour[i].id][i+d] || (move_val+pen_tt < best_cost)) {
d_bestf = moveval;
feas_i = i;
feas_d = d;

}/* end if not tabu*/
} /* end if improved move value (travel time) */

} /* end if feasible neighbor found.*/
else {
if (move_val < d_best) {

if(k>tabu_list[tour[i].id][i+d] || (move_val+pen_tt < best_cost)) {
d_best = move_val;
chi = i;
ch_d = d;

}/* end if not tabu*/
} /* end if improved move value */

} /* end else: infeasible neighbor */ /* escape routine */
if (moveval < esc_best) {

/* Finds the best of all neighboring moves regardless if tabu or not.*/
escbest = moveval;
esc_i = i;
esc_d = d;

} /* end escape if */
} /* end else customers on same route*/

} /* end for d */
} /* end for i */

/* Check all EARLIER Within Route Insertions */

for (i=3; i<=miodes-2; ++i) {
if (tour[i].type = 2) continue; /* You are at a vehicle node */
if ((tour[i].id — locx[i] = i) && tour[i].type = 2) break;
for (j=0; j < nnodes ; ++j) {

oldtour[j] = tour[j];
loctemp[j] = locxjj];

}
for(d=l;i>d;++d) {

if (tour[i-d].type = 2) break;
/* not on same vehicle or you are at the depot */

else {
if (tour[i].pred = tour[i-d].id || tour[i-d].succ = tour[i].id || tour[i].e +

time[tour[i].id][tour[i-d].id] > tour[i-d].l) break;
else {

192

SWAP(loctemp[oldtour[i-d].id],loctemp[oldtour[i-d+l].id], tempi);
swap_node(i-d, i-d+1, oldtour);
moveval = move_delta(i, -d, nnodes, tour, oldtour, time);
comp_parpens(&nbrpen, nnodes, oldtour, CAP);
totnbrpen = nbrpen.tw + nbrpen.ld ;
move_val += TWPEN*(nbrpen.tw - tourpen.tw) + VPEN*(nbrpen.ld - tourpen.ld);

} /* end else */
if(tot_nbrpen = 0){

/*If totjubrpen = 0 => feasible neighbor tour.*/
if(move_val<d_bestf) {

if (k > tabu_list[tour[i] .id] [i-d] 11 (move_val+pen_tt < best_cost)) {
d_bestf=moveval;
feas_i = i;
feas_d = -d;

} /* end if not tabu*/
}/*end if improved move value (travel time).*/

} /*end if feasible neighbor found.*/
else {
if(move_val<d_best) {

if (k > tabu_list[tour[i].id][i-d] || (move_val+pen_tt<best_cost)) {
dbest = moveval;
ch_i = i;
ch_d = -d;

}/* end if tabu*/
} /* end if improved move value*/
}/* end else: infeasible neighbor.*/ /*escape routine*/
if(move_val<esc_best) { /* Finds the best neighboring move.*/

escbest = move_val;
esc_i = i;
esc_d = -d;

} /* end escape if */
} /* end else: customer node */
}/* end ford*/

} /*end for i*/

/* If there are no moves to be made, move to the next search scheme */

if(esc_i = 0){
—wricount;
goto SPI;

}

/* If a feasible move is found...move to it!*/
if(feas_i!=0){

ch_i = feas_i;
chd = feas_d;

193

} /* end if feasible move is found.*/

/* If all moves are tabu and none meet the aspiration criteria, then set ch_i and chd to the best
move discovered and decrease the tabu length. */

if(ch_i = 0 && esc_i != 0) {
ch i = escJ;
ch_d = esc_d;
tabujength = max((int) (tabu_length)*DECREASE,5);

}/* end for all moves tabu*/

/* UPDATE: TABU LIST AND TOUR POSITIONS Allows no "return" moves for tabujength
iterations. */

if (chd = 1) tabujist [tour[ch_i+l].id][ch_i+l] = k + tabujength;
else tabujist [tour[chj].id][chj] = k + tabujength;

/* Allows no "repeat" moves for tabujength iterations. */
tabujist [tour[chj].id][chj+ch_d] = k + tabujength;

/* BEFORE the new tour is constructed, update the h3t value:*/
zin = zout = 0;
i= ch i;
j=((ch_d>0) ? chj+chd : ch i+ch_d-l);
zout = z[tour[i-l].id]*z[tour[i].id] + z[tour[i].id]*z[tour[i+l].id] + z[tour[j].id]*z[tour[j+l].id];
zin = z[tour[i-l].id]*z[tour[i+l].id] + z[tour[j].id]*z[tour[i].id]+ z[tour[i].id]*z[tour[j+l].id];
h3t += zin - zout;
tourhv = h3t;
tour = insert(chj, tour, locx, chd, nnodes);
tour length = ((chd X)) ? tour_sched(ch i, nnodes, tour, time)

: tour_sched(ch i+ch_d, nnodes, tour, time));
goto update;

SPI:
/* Now for the more rigorous SPI. This is an 0(n2) search for single pair insertions. We initially
select predecessors to move. We know where there successors are located. We only look to
move the pair on other routes. This will help expedite the search. */
++spicount;
for (i=l; i< nnodes-2; ++i) {

if ((tour[i].vehicle = i) && tour[i].type = 2) break;
/* search starts only with a predecessor node */

if (tour[i].type = 2 || tour[i].pred != 0) continue;
for (j=l; j<nnodes-2; ++j) {

if (tour[i].vehicle != tourjj].vehicle) {/* place on another route */
if(tour[j].type = 2){

/* if you are attempting to insert before the last node on the route, the vehicle node, you must
check to see if you can insert the/rairwise-POS. Checking to insert the predecessor (supply node)
before the vehicle (depot) node is not permitted. It is one of the inadmissable arcs. This checks
SPATIAL fit */

194

if (tour[j-l].dep + time[tour[j-l].id][tour[i].id] + time[tour[i].id][tour[i].succ]
+ time[tour[i].succ][tour[j].id] <= tour[j].l && tour[i].e +
time[tour[i].id][tour[i].succ] + time[tour[i].succ][tour[j].id] <= tour[j].l)
goto updatetour;

} /* end if insertion before vehicle node */
/* insert BEFORE the j position if it does not violate strong TWs. The dominance of precedence
is established by where we can possibly insert the successor */

if (tour[j-l].dep + time[tour[j-l].id][tour[i].id] + time[tour[i].id][tour[j].id]
<= tour[j].l && tour[i].e + time[tour[i].id][tour[j].id] <= tour[j].l) {

updatetour:
current_vehicle = tour[j] .vehicle;
for Q'2=0; j2 < nnodes ; ++j2) {

oldtour[j2] = tour[j2];
loctemp[j2] = locx[j2];

} /* end for j2 - setting up working tour */
/* Insert the predecessor */

oldtour = ((i<j) ? insert(i, oldtour, loctempj-i-1,nnodes)
: insert(i, oldtour, loctemp, j-i, nnodes));

/* Compute an initial change in the tour - this change IGNORES precedence and coupling */
moveval = ((i<j) ? move_delta(i, j-i-1, nnodes, tour, oldtour, time)

: move_delta(i, j-i, nnodes, tour, oldtour, time));
for (d=0; d<=depth && tour[j+d].vehicle = currentvehicle; ++d) {

/* Start with d=0 so you can insert the successor immediately following the predecessor */
if (tour[i+d]. vehicle = i+d && tour[i+d].type = 2) break;

/* Need to save the passing of the predecessor for oldtour in preparation for the move of the
successor */

for (d2=0; d2 < nnodes; ++d2) {
oldtour2[d2] = oldtour[d2];
loctemp2[d2] = loctemp[d2];

} /* end for d2 */

/* By evaluating ALL possible insertions after the predecessor, we can force exploration of
infeasible solutions. Some of these may have better travel times!*/

oldtour2 = ((i<j) ? insert(loctemp[tour[i].succ], oldtour2, loctemp2,
j+d-loctemp[tour[i].succ]-l,nnodes): insert(loctemp[tour[i].succ],
oldtour2, loctemp2, j+l+d-loctemp[tour[i].succ], nnodes));

move_val2 = ((i<j) ? move_delta(loctemp[tour[i].succ],
j+d-loctemp[tour[i].succ]-l, nnodes, oldtour, oldtour2, time)+move_val

: move_delta(loctemp[tour[i].succ], j+l+d-loctemp[tour[i].succ],
nnodes, oldtour, oldtour2, time) + moveval);

comp_parpens(&nbrpen, nnodes, oldtour2, CAP);
totnbrpen = nbrpen.tw + nbrpen.ld;

/* Note: precedence and coupling constraints are satisfied. */
move_val2 += TWPEN*(nbrpen.tw - tourpen.tw) + VPEN*(nbrpen.ld - tourpen.ld);

if (i<j) { /* insert LATER */
if(tot_nbrpen = 0) {

/* If totnbrpen = 0 => feasible tour.*/

195

if (move_val2 < dbestf) {
if (k > tabu_list[tour[i].id][j-l] ||

(move_val2+pen_tt < bestcost)) {
dbestf = move_val2;
feas_i = i; /* which predecessor is moving */
feas_spi = j; /* where pred moves before */
feas_d = d; /* how much further away the successor is placed */

}/* end if not tabu*/
} /* end if improved move value (travel time) */

} /* end if feasible neighbor found.*/
else {

if (move_val2 < d_best) {
if (k > tabu_list[tour[i].id][j-l] || (move_val2+pen_tt < best_cost)) {

d_best = move_val2;
ch_i = i;
ch_spi=j;
ch_d = d;

}/* end if not tabu*/
} /* end if improved move value */

} /* end else: infeasible neighbor */
}/*endifi<j*/
else {/* insert EARLIER*/

if(tot_nbrpen = 0) {
/* If totnbrpen = 0 => feasible neighbor tour.*/

if (move_val2 < d_bestf) {
if (k > tabu_list[tour[i].id][j] || (move_val2+pen_tt < best_cost)) {

d_bestf=move_val2;
feas_i = i;
feas_spi=j;
feasd = d;

} /* end if not tabu */
} /* end if improved move value (travel time) */

} /* end if feasible neighbor found.*/
else {

if (move_val2 < d_best) {
if (k > tabu_list[tour[i].id][j] || (move_val2+pen_tt < best_cost)) {

dbest = move_val2;
chi = i;
ch_spi=j;
ch_d = d;

} /* end if not tabu */
} /* end if improved move value */

} /* end else: infeasible neighbor */
} /* end else */

} /* end for d */

196

} /* end if predeccessor fits */
} /* end if on different routes */

} /* end for j */
} /* end for i - finished rigorous search */

/* If a feasible move is found...move to it!*/
if(feas_i!=0){

ch_i = feas_i;
ch_spi = feas_spi;
ch_d = feas_d;

} /* end if feasible move is found.*/

/* Note: if ch_i = 0, there is no improving pair to insert */
if(ch_i = 0){

—spicount;
d_best = esc_best = d_bestf = 999999;
ch_i = feas_i = esc_i = 0;
chd = feasd = esc_d = 0;
chspi = feasspi = escspi = 0;
goto swap_pairs; /* escape routine */

}
if(ch_i!=0){

same = 1; /* found location to insert pair */
esci = ((ch_i < chspi) ? locx[tour[ch_i].succ] -1 : locx[tour[ch_i].succ]);
esc_d = ((ch_i < ch_spi) ? ch_spi+ch_d-esc_i-l : ch_spi+l+ch_d-esc_i);

/* Need to check that if we are reducing the number of vehicles, that we only perform the
reduction if the move is to a feasible tour. We will not consider an infeasible move until most of
the search has been completed. */

for(j2=0;j2<nnodes;++j2) {
oldtour[j2] = tour[j2];
loctemp[j2] = locx[j2];

} /* end for j2 - setting up working tour */
oldtour = ((ch_i<ch_spi) ? insert(ch_i, oldtour, loctemp, ch_spi-ch_i-l, nnodes)

: insert(ch_i, oldtour, loctemp, chspi-chi, nnodes));
if (same) {/* insertion of a pair satisfying (a) or (b) on another route */

/* insert the successor from second neighborhood search */
if (ch_i<ch_spi) oldtour = insert(esc_i, oldtour, loctemp, escd, nnodes);
else oldtour = insert(esc_i, oldtour, loctemp, esc_d, nnodes);
tourlength = tour_sched(l, nnodes, oldtour, time);

}
comp_parpens(&nbrpen, nnodes, oldtour, CAP);
tot_penalty = nbrpen.tw + nbrpen.ld ;
if (count_vehs(nnodes, oldtour) < num_veh_used) {
if (tot_penalty = 0 || k > .5*niters) num_veh_used = count_vehs(nnodes, oldtour);
if (tot_penalty != 0 && k <= .5*niters) {

—spicount;

197

dbest = esc_best = d_bestf = 999999;
ch_i = feasi = esc_i = 0;
chd = feasd = escd = 0;
chspi = feas_spi = escspi = 0;
same = 0;
goto swap_pairs;

}
}

/* UPDATE: TABU LIST AND TOUR POSITIONS */
/* Allows no "return" moves for tabu_length iterations. Uses the predecessor only for the second
neighborhood search scheme */

tabu_list [tour[ch_i].id][ch_i] = k + tabu_length;
/* Allows no "repeat" moves for tabu_length iterations. */

if (ch_i<ch_spi) tabujist [tour[ch_i].id][ch_spi-l] = k + tabujength;
else tabu_list [tour[ch_i].id][ch_spi] = k + tabujength;

/* BEFORE the new tour is constructed, update the h3t value:*/
zin = zout = 0;
i= ch_i;
j=((ch_i < ch_spi) ? ch_spi-l : chspi);
zout = z[tour[i-l].id]*z[tour[i].id] + z[tour[i].id]*z[tour[i+l].id] + z[tour[j].id]*z[tour[j+l].id];
zin = z[tourti-l].id]*z[tour[i+l].id] + z[tour[j].id]*z[tour[i].id]+ z[tour[i].id]*z[tour[j+l].id];
h3t += zin - zout;
tourhv = h3t;
for(j2=0;j2<nnodes;++j2) {

tour[j2] = oldtour[j2];
locx[j2] = loctemp[j2];

} /* end for j2 - setting up working tour */

tourlength = tour_sched(l, nnodes, tour, time);
first =1;
goto update;

} /* end if found insert pair */

swap_pairs:
++swapcount;
/* move to the third search neighborhood where we swap pairs between routes */
if(ch_i = 0){

for (i = 1; i < nnodes-2; ++i) {
if (tour[i].type = 2) continue; /* You are at a vehicle node */
if ((tour[i].id = locx[i] = i) && tour[i].type = 2) break;
if (tour[i].succ != 0) {■/* if it has a successor, then this node is a predecessor */
for (j = i+1; j < nnodes-2; ++j) {
if (tourfj].vehicle != tour[i].vehicle && tour[j].succ != 0) {

for (d=0;d< nnodes ;++d) {
oldtourfd] = tour[d];
loctemp[d] = locx[d];

} /* end for d - setting up working tour */

198

if (k>tabu_list[tour[i].id][j] &&k>tabu_list[tour[j].id][i]) {
SWAP(oldtour[loctemp[oldtour[i].succ]].vehicle,

oldtour[loctemp[oldtour[j].succ]].vehicle, tempi);
SWAP(oldtour[loctemp[oldtour[i].succ]], oldtour[loctemp[oldtour[j].succ]], temp2);
SWAP(loctemp[oldtour[i].succ], loctemp[oldtour[j].succ],templ);
SWAP(oldtour[i].vehicle, oldtour[j].vehicle, tempi);
SWAP(oldtour[i], oldtourtj], temp2);
SWAP(loctemp[oldtour[i].id], loctemp[oldtour[j].id]> tempi);
tour_length = tour_sched(i, nnodes, oldtour, time);
comp_parpens(&nbrpen, nnodes, oldtour, CAP);
tot_nbrpen = nbrpen.tw + nbrpen.ld;
move_val = tourjength + TWPEN*nbrpen.tw + VPEN*nbrpen.ld;
if(tot_nbrpen = 0) {

/* If totnbrpen = 0 => feasible tour.*/
if (moveval < d_bestf) {

dbestf=move_val;
/* which predecessor is moving */

feasi = i;
/* where predecessor moves before */

feas_spi=j;
} /* end if improved move value (travel time) */

} /* end if feasible neighbor found.*/
else {

if (moveval < dbest) {
d_best = moveval;
chi = i;
ch_spi=j;

} /* end if improved move value */
} /* end else: infeasible neighbor */ /* escape routine */
if (moveval < escbest) {

/* Finds the best of all neighboring moves regardless if tabu or not.*/
escbest = move_val;
esc_i = i;
esc_spi=j;

} /* end escape if*/
} /* end tabu check */

} /* end if on different vehicles - predecessors identified */
} /* end for j */

} /* end if predecessor identified */} /* end for i */
if (feasi != 0) {/* feasible neighbor - move to it */

chi = feasi;
chspi = feas_spi;

}
if(ch_i = 0){

ch_i = esc_i;
ch_spi = esc_spi;

}

199

if (ch i != 0) { /* perform the swap... */
SWAP(tour[locx[tour[ch_i].succ]].vehicle,tour[locx[tour[ch_spi].succ]].vehicle, tempi);
SWAP(tour[locx[tour[ch_i].succ]], tour[locx[tour[ch_spi].succ]], temp2);
SWAP(locx[tour[ch_i].succ], locx[tour[ch_spi].succ], tempi);
SWAP(tour[ch_i].vehicle, tour[ch_spi].vehicle, tempi);
SWAP(tour[ch_i], tour[ch_spi], temp2);
SWAP(locx[tour[chJ].id], locx[tour[ch_spi].id], tempi);

/* ... and update the tabu structure */
tabujist [tour[ch_i].id][ch_i] = k + tabujength;
tabujist [tour[ch_spi].id][ch_spi] = k + tabujength;

/* prevents direct (active) move back into the position into which the node is current moving */
tabujist [tour[ch_i].id][ch_spi] = k + tabujength;
tabujist [tour[ch_spi].id][chJ] = k + tabujength;

/* BEFORE the new tour is constructed, update the h3t value: this is based on swapping the
predecessor at position with the predecessor at position j */

zin = zout = 0;
i = chJ;
j = ch_spi;
zout = z[tour[i-l].id]*z[tour[i].id] + z[tour[i].id]*z[tour[i+l].id]+ z[tour[j].id]*z[tour[j+l].id];
zin = z[tour[i-l].id]*z[tour[i+l].id] + z[tour[j].id]*z[tour[i].id]+ z[tour[i].id]*z[tour[j+l].id];
h3t += zin - zout;
tourhv = h3t;
tourjength = tour_sched(l, nnodes, tour, time);
goto update; /* update the tour */

} /* end if */ } /* end if ch J = 0*1
/* Calculate the new incumbent tour infeasibilities.*/
update:

compjparpens(&tourpen, nnodes, tour, CAP);
/* Compute the infeasibility costs */

tot_penalty = tourpen.tw + tourpen.ld ;
tw_cost = TWPEN*tourpen.tw;
load_cost = VPEN*tourpen.ld;
pencost = twcost + load_cost;

/* Compute the new incumbent tour values.*/
tourcost = tourjength + pencost;
torwait = sum_wait(nnodes, tour);
pen« = tour_cost - totwait;
tvl = pen_tt - pencost;

if(tot_penalty = 0)
keep_bfs(nnodes, tour, tour_cost, tvl, best_ftour, &bftour_cost,

&bftvl_time, &bfiter_no, k, start, &bestf_time);
if(pen_tt<best_cost) {

best_tt = tvl;
bt_pen_cost = tourpen.tw + tourpen.ld;
best_cost = pen_tt;

200

soln time = clock();
best_time = (((double)solnjime - (double)start)/(double)CLOCKS_PER_SEC);
for (i=l; i< nnodes; ++i) best_tour[i] = tourfi];
iterno = k;
if (k> niters/4) {
fprintf(ofp,"\n\nA (possible) super-optimal solution was found on the %dth iteration.\n",

iterno);
print_sched(best_tour, nnodes, ofp);
fprintf(ofp,"\nThe travel time of this tour is%8.1f.\n", (float) besttt/FACTOR);
fprintf(ofp,"The time windows violation = %ld\n", tourpen.tw);
++count;

}
} /* end if— end the update of the best tour value & best tour.*/

++k;
} /* end while....Ends the tabu search subroutine */

/*Add the tour found at the last iteration to the hash table, if necessary.*/
ptr = lookfor(tour_cost, tourhv, tourpen.tw, tourpen.ld, k-1, tvl);
if (tot_penalty = 0 && ptr = NULL) ++numfeas;
if (ptr = NULL) notfound(&tabu_length, &ssltlch, mavg, ofp);
else found(ptr, &tabu length, &ssltlch, &mavg, k, ofp);
stop = clock();
duration = (((double)stop - (double)start)/(double) CLOCKS_PER_SEC);
if (bestfjime != 999999.0) makespan(nnodes, best ftour, &feas_compl, &num feas_veh);
makespan(nnodes, besttour, &compl_time, &num_veh_used);

/* Output the best tour found, iteration number, tour length, the shortest tour found overall
regardless of feasibility and the number of feasible tours discovered during the search. */

/* Record the solution values for the summary sheet.*/
soln[0] = (float)(((bestf_time != 999999.0)? feas_compl: compl_time)/FACTOR);
soln[l] =(float) (((bestfjime != 999999.0)? bftvljime: best_tt)/FACTOR);
soln[2] = (float) (bfiter_no);
soln[3] = (float)(best_tt/FACTOR);
soln[4] = (float) (((bftvljime = best_tt)? 0: bt_pen_cost)/FACTOR);
soln[5] = (float) (iterno);
soln[6] = (float) (((bestfjime != 999999.0)? bestfjime: bestjime));
soln[7] = (float) (numfeas);
soln[8] = (float) (complJime/FACTOR);
soln[9] = (float) (duration);
soln[10] = (float) (((bestfjime != 999999.0)? bfiter_no: iter_no));
soln[l 1] = (float) (feas_compl/FACTOR);
soln[12] = (float) (num feas_veh);
soln[13] = (float) (numvehused);
soln[14] = (float) (0);
if (bftour jost < 999999) {

fprintf(ofp,"The best feasible tour was found on the %dth iteration.W, bfiterno);

201

print_sched(best_ftour, nnodes, ofp);
fprintf(ofp,"The cost of the tour is %ld.\n", (long) (bftour_cost/FACTOR));
fprintf(ofp)"The travel time of the tour is %ld.\n", (long) (bftvl_time/FACTOR));

}
else fprintf(ofp)"THE ALGORITHM FOUND NO FEASIBLE TOUR.");
if (best_tt != 0 /*bftvl_time*/) {

fprintf(ofp,"\n\nThe best overall travel time tour was found on the %dth iteration.\n",
iter_no);

print_sched(best_tour, nnodes, ofp);
fprinrf(ofp,"The length of the tour is %8.1f.\n", (float) compl_time/FACTOR);
fprmtf(ofp,"\nThe travel time of this tour is%8.1f.\n\n", (float) best_tt/FACTOR);

}
else fprintf(ofp,"THE BEST TOUR FOUND IS THE FEASIBLE TOUR ABOVE!\n\n");
fprintf(ofp,"The tabu search routine took %.3f seconds.\n\n", duration);
fprintf(ofp,"The search found a total of %d feasible tours.\n", numfeas);
fprintf(ofp,"The search found a total of %d different tours.\n", numdiff);
fprintf(ofp,"wricount=%d\tspicount=%d\tswapcount=%d\n",wricount, spicount, swapcount);
fprintf(ofp,"The average time window length = %ld\n", atwl);
fprintf(ofp,"The planning horizon = %d\n", tour[0].l); fprintf(ofp,"\nThere

were %d (possible) super-optimal tours\n", count);
printf("\nThere were %d (possible) super-optimal tours\n", count);

/* Free all the memory structures after every problem to start over every time */
free(z);
free(tour);
free(initialtour);
free(besttour);
free(best_ftour);
free(oldtour);
free(oldtour2);
free(locx);
free(locinitial);
free(loctemp);
free(loctemp2);
for (i=0; i < nnodes; ++i) free(time[i]);
free(time);
for (i=0; i < nnodes; ++i) free(tabu_list[i]);
free(tabu_list);

return &soln[0];

}/* end of the t_search function */

/* This function computes the incremental change in the value of the incumbent tour to the
proposed neighbor tour.*/
int move_delta(i, d, n, t, tt, ti)

int i; /* The starting point for computing the value.*/

202

int d; /* The depth of the insertion.*/
intn; /* The number of nodes in the tour.*/
NODE *t; /* The incumbent tour structure.*/
NODE *tt; /* The neighbor (temporary) tour structure.*/
int **ti; /* The time/distance matrix.*/

{
int is; /* The starting point for the nbr schedule.*/
int j; /* The index of the "target" node of insertion.*/
int delin; /* The incremental tour travel time.*/
int delout; /* The incremental tour travel time.*/
NODE *npi, *npil; /* Node pointer indexes used to iterate.*/

/* This routine stops computing when a vehicle node is encountered after the "within" area of
change.*/

int iend; /* Index to end of "within" area of insertion.*/
NODE *npe; /*. Pointer to the end of within insertion.*/
delin = delout = 0; if (d>0) {

j = i+d;
is = i+d-1;
iend = i+d+l;

}/*endif*/
else {

j = i+d-l;
is = i+d;
iend = i+d+3;

} /* end else */
npi = &tt[is-l];
npe = &tt[iend];

/* This is a procedure for updating the schedule from istart to the appropriate vehicle node, or the
terminal depot.*/

while (npi < npe || npi->type — 1) {
npil =npi+l;
npil->load = ((npi->type = 2)? 0: npi->load) + npil->qty;
npil->arr = npi->dep + ti[npi->id][npil->id];
if(npil->type = 2) {

npil->dep = npil->e;
npil->wait = 0;

} /* end if vehicle node */
else {

npil->dep = max(npil->e, npil->arr);
npil->wait = npil->dep - npil->arr;

} /* end if customer node */
++npi;

} /* end while */
delout = ti[t[i-l].id][t[i].id] + ti[t[i].id][t[i+l].id] + ti[t[j].id][t[j+l].id];
delin = ti[t[i-l].id][t[i+l].id] + ti[t[j].id][t[i].id] + ti[t[i].id][t[j+l].id];

203

return (delin - delout);
} /* This ends the computation of the move value.*/
long length;
/* This function computes the tour schedule for a neighbor (temporary) tour. It returns the total
value of the tour length. */
long tour_sched(istart, n, t, ti)

int istart; /*The starting point for computing the sched.*/
int n; /*The number of nodes in the tour. */
NODE *t; /*The tour structure.*/
int **ti; /*The time-distance matrix.*/

{
NODE *h; /*Index for the pointer to istart-1 .*/
NODE *lastnp; /*Index for the pointer to the last node.*/
NODE *np, *npl; /*Node pointer indexes used to iterate.*/
long tour_length; /*The total tour length.*/
long length;
tourjength = 0;
h = &t[istart-l];
lastnp = &t[n-l];

/*This computes the tour length from the origin depot to istart.*/
for (np = &t[0]; np < h; ++np) tourjength += ti[np->id][(np+l)->id] + (np+l)->wait;

/* This is a procedure for updating the schedule from istart to the terminal depot.*/
for (np = h; np < lastnp; ++np) {

npl =np+l;
npl->load = ((np->type = 2)? 0: np->load) + npl->qty;
npl->arr = np->dep +ti[np->id][npl->id];
if(npl->type==2) {

npl->dep = npl->e;
npl->wait = 0;

} /* end if vehicle node */
else {

npl->dep = max(npl->e, npl->arr);
npl->wait = npl->dep - npl->arr;

} /* end else customer node.*/
tourjength += ti[np->id][npl->id] + npl->wait;

} /* end for */
length = tourlength;

return (length);
} /* This ends the computation of the tour schedule.*/

void comp_parpens(penptr, n, t, c)
/* This is used to compute the time window and load penalties. */

PENALTY *penptr; /* The pointer to the penalty structure.*/
int n; /* The number of nodes.*/

204

NODE *t; /* The tour pointer.*/
int c; /* The vehicles' capacity.*/

{
NODE *np; /* The index for the node pointer.*/
NODE *lastnp; /* The index for pointer to the last node.*/
long infeasld = 0; /* The total load infeasibility of the tour.*/
long infeas_tw = 0; /* The total TW infeasibility of the tour.*/
lastnp = &t[n-l];
for (np = &t[l]; np <= lastnp ; ++np) {

infeas_tw += max(0, np->arr - np->l);
if (np->type == 2) infeas_ld += max(0, np->load - c);

}
penptr->tw = infeastw;
penptr->ld = infeas_ld;
return;

}

/* A function to perform a swap move. It swaps two node structures in the specified tour.*/
void swap_node(i, j, t)

int i, j; /* Indices of the nodes to be swapped.*/
NODE *t; /* Structure for the tour to be swapped.*/

{
NODE x; /* Temporary variable for the SWAP macro.*/
int z; /* Temporary variable for the SWAP macro */

SWAP(t[i].vehicle, t[j].vehicle, z);
SWAP(t[i],t[j],x);

} /* end of swap node function */

/* A function to perform "depth" number sequence of swaps and returns a pointer to the resulting
tour structure vector.*/
struct node * insert(is, t, locate, depth, n)

int is; /* The node to be inserted.*/
NODE *t; /* The current tour pointer.*/
int depth; /* The depth of the insertion (depth> 0) =>later; (depthO) => earlier in the tour.*/
int n; /* The number of nodes in the tour. */
int *locate; /* locator array */

{
register int i, j; /* Indices for counting.*/
NODE x; /* Temporary variable for the SWAP macro.*/
int z; /* Temporary variable for the SWAP macro */
NODE *t_t; /* The structure for the new "inserted" tour.*/

t_t = (struct node *)calloc(n, sizeof(NODE));
for (i=0; i< n; ++i) t_t[i] = t[i];
if (depth >0) {

for (j=0;j< depth;++j){

205

if(t_t[is+j].type = 2){
t_t[is+j+l]. vehicle = t_t[is+j].vehicle;
SWAP(t_t[is+j], t_t[is+j+l], x);
SWAP(locate[t_t[is+j].id], locate[tJtis+j+l].id],z);

}
else if (t_t[is+j].type = 1 && t_t[is+j+l].type = 2) {

t_t[is+j].vehicle = t_t[is+j+2] .vehicle;
SWAP(t_t[is+j], t_t[is+j+l], x);
SWAP(locate[tJ[is+j].id]Jocate[tJ[is+j+l].id],z);

}
else {

SWAP(t_t[is+j], t_t[is+j+l], x);
SWAP(locatett_t[is+j].id],locate[t_t[is+j+l].id],z);

}
} /*end for */

}/*endif*/
else {

for (j=0;j> depth;-j){
if(t_t[is+j].type=2){

t_t[is+j-l]. vehicle = t_t[is+j+l]. vehicle;
SWAP(t_t[is+j], t_t[is+j-l], x);
SWAP(locate[t_t[is+j].id], locate[t_t[is+j-l].id], z);

}
else if (t_t[is+j].type = 1 && t_t[is+j-l].type == 2) {

t_t[is+j]. vehicle = t_t[is+j-l]. vehicle;
SWAP(t_t[is+j], t_t[is+j-l], x);
SWAP(locate[t_t[is+j].id], locate[t_t[is+j-l].id], z);

}
else {

SWAP(tj[is+j],t_t[is+j-l],x);
SWAP(locate[t_t[is+j].id], locate[t_t[is+j-l].id], z);

}
} /*end for*/

} /* end else */
for (i=0; i< n; -f+i) t[i] = t_t[i];
free(tt);
return (t);

} /* end of the Insertion function. */

/* A Function to compute the sum of the waiting time. */
long sum_wait(n, t)

int n; /*The number of nodes in the tour.*/
NODE *t; /"The tour to be printed.*/

{
NODE *np; /*Node pointer indexes used to iterate.*/
long sum; /*The waiting time sum.*/
sum = 0;

206

for (np = &t[0]; np <= &t[n-l]; ++np) sum += np->wait;
return sum;

}/*The end of the sum_wait function.*/

void build_tour(t, tt, nc, nn, cap)
NODE *t;
int **tt;
int nc, nn, cap;

{
NODE »oldtour;
NODE *oldtour2;
PENALTY part_pen;
int *locx, *loctemp, *loctemp2;
register int i, d, j, j2, d2;
intstartj;
int depth = (nc-l)/2;
int lastvehicle = nc;
int currentvehicle, vehicleid; /* records which vehicle is last in tour */
int chi, chspi, chd, esc_i, escd;
long dbest;
int nn_partial, nv_partial, nc_partial;
long move_val, move_val2;
long tourlength;
locx = (int *)calloc(nn, sizeof(int));
loctemp = (int *)calloc(nn, sizeof(int));
loctemp2 = (int *)calloc(nn, sizeof(int));
oldtour = (struct node *) calloc(nn, sizeof(NODE));
oldtour2 = (struct node *) calloc(nn, sizeof(NODE));

chi = chspi = chd = esci = esc_d = 0;
d_best = 99999;

/* Get first pairwise-POS scheduled on first route */

for(i=l;i<=nc;++i) {
if (t[i].succ != 0) {

ch_i = t[i] .id; /* location of the predecessor */
chspi = t[t[i].succ].id; /* location of the successor */
break;

}
}
if (ch_i != 1) iinsert (ch_i,t,l-ch_i,nn);
if (ch_i < ch_spi) iinsert (ch_spi,t,2-ch_spi,nn);
else iinsert(ch_spi+l,t,l-ch_spi,nn);
/* insert vehicle #1 in position #3 on the tour */
iinsert (nc,t,3-nc,nn);
length = toursched (1,3, t, tt);
for (i = 0; i < nn; ++i) locx[t[i].id] = i;

207

/* number of nodes, vehicles and customers on partially constructed tour */
nn_partial = 3; nv_partial = 1; nc_partial = 2;

/* Determine the customer vehicle assignment */
for (i=nnjpartial; i > 0; ~i) {

if(t[i].type = 2){
vehicle_id = t[i].id;
t[i].vehicle = vehicle_id;

}
if (t[i].type = 1) t[i].vehicle = vehicle_id;

}
chi = chspi = chd = 0;
for (i=4; i< nn-2; ++i) {

if (nc_partial = nc-1) break; /* search starts only with a predecessor node */
if (t[i].type = 2 || t[i].pred != 0) continue;
startj = l;nextj:
for (j=startj; j<nn-2 && t[j].vehicle <= lastvehicle; ++j) {

if(tD].type = 2){
/* if you are attempting to insert before the last node on the route, the vehicle node, you must
check to see if you can insert the pairwise-VOS. Checking to insert the predecessor (supply node)
before the vehicle (depot) node is not permitted. It is one of the inadmissable arcs. This checks
SPATIAL fit */

if (t[j-l].dep + tt[t[j-l].id][t[i].id] + tt[t[i].id][t[i].succ] + tt[t[i].succ][t[j].id]
<= t[j].l && t[i].e + tt[t[i].id][t[i].succ] + tt[t[i].succ][t[j].id] <= t[j].l) {
for(j2=0;j2<nn;++j2) {

oldtour[j2] = t[j2];
loctemp[j2] = locx[j2];

} /* end for j2 - setting up working tour */

/* Insert the predecessor */
oldtour = insert(i, oldtour, loctemp, j-i, nn);

/* Compute an initial change in the tour - this change IGNORES precedence and coupling */
moveval = move_delta(i, j-i, nn, t, oldtour, tt);

for(d2=0;d2<nn;++d2){
oldtour2[d2] = oldtour[d2];
loctemp2[d2] = loctemp[d2];

} /* end for d2 */

oldtour2 = insert(loctemp[t[i].succ], oldtour2, loctemp2, j+l+-loctemp[t[i].succ], nn);
move_val2 = move_delta(loctemp[t[i].succ], j+l+-loctemp[t[i].succ], nn, oldtour,

oldtour2, tt) + move_val;
/* This checks TEMPORAL feasibility */

comp_parpens(&part_pen, nn_partial+2, oldtour2, cap);
/* if not feasible, disregard */

if (part_pen.tw = 0 && part_pen.ld = 0 && move_val2 < d_best) {
d_best = move_val2;
ch_i = i;

208

ch_spi=j;
chd = 0;

}
if (t[j].vehicle = lastvehicle) goto tourupdate;

/* end insertion search and update the tour */
else {

starrj=j+l;
goto nextj;

} /* look to insert a pair on the next sequenced route */
}

} /* end insertion of the pairwise-POS */
/* insert BEFORE the j position if it does not violate strong TWs. This checks SPATIAL fit */

if (t[j-l].dep + tt[t[j-l].id][t[i].id] + tt[t[i].id][t[j].id] <= t[j].l
&& t[i].e + tt[t[i].id][t[j].id] <= t[j].l) {
current_vehicle = t[j].vehicle;
for(j2=0;j2<nn;++j2) {

oldtour[j2] = t[j2];
loctemp[j2] = locx[j2];

} /* end for j2 - setting up working tour */

/* Insert the predecessor */
oldtour = insert(i, oldtour, loctemp, j-i, nn);

/* Compute an initial change in the tour - this change IGNORES precedence and coupling */
moveval = move_delta(i, j-i, nn, t, oldtour, tt);
for (d=0; d<=depth && t[j+d] .vehicle = currentvehicle; ++d) {

/* Start with d=0 so you can insert the successor immediately following the predecessor. Need to
save the passing of the predecessor for oldtour in preparation for the move of the successor */

for (d2=0; d2 < nn; ++d2) {
oldtour2[d2] = oldtour[d2];
loctemp2[d2] = loctemp[d2];

}/*endford2*/

oldtour2 = insert(loctemp[t[i].succ], oldtour2, loctemp2, j+l+d-loctemp[t[i].succ], nn);
move_val2 = move_delta(loctemp[t[i].succ], j+l+d-loctemp[t[i].succ], nn, oldtour,

oldtour2, tt) + move_val;
/* This checks TEMPORAL feasibility */

comp_parpens(&part_pen, nn_partial+2, oldtour2, cap);
/* if not feasible, disregard */

if (part_pen.tw > 0 || part_pen.ld > 0) continue;
if (move_val2 < d_best) {

d_best = move_val2;
ch_i = i;
ch_spi=j;
chd = d;

}
} /* end for d - locating successor */

209

} /* end if feasible insertion for predecessor */
} /* end for j */ tourupdate:

if(ch_i!=0){
esc_i = ((ch_i < locx[t[ch_i].succ]) ? locx[t[ch_i].succ]: locx[t[ch_i].succ]+l);
escd = ch_spi+1 +ch_d-esc_i;
t = insert(ch_i, t, locx, ch_spi-ch_i, nn);
t = insert(esc_i, t, locx, esc_d, nn);

/* number of nodes, vehicles and customers on partially constructed tour */
nn_partial = nn_partial + 2;
nc_partial = nc_partial + 2;

}
if (ch_i = 0) { /* need to start a new route */

ch_i = locx[t[i].id];
ch_spi = locx[lastvehicle]+l;
esc_i = ((chi < locx[t[ch_i].succ]) ? locx[t[ch_i].succ]: locx[t[ch_i].succ]+l);
escd = ch_spi+l+-esc_i;
t = insert(ch_i, t, locx, ch_spi-ch_i, nn);
t = insert(esc_i, t, locx, escd, nn); /* Insert the next vehicle */
t = insert(locx[lastvehicle+l], t, locx, ch_spi+2-locx[lastvehicle+l], nn);
++lastvehicle;
nn_partial = nn_partial + 3;
nc_partial = nc_partial + 2;
-H-nv_partial;

} /* Determine the customer vehicle assignment */
tour_length = tour_sched(l, nn_partial, t, tt);
for (i=nn_partial; i > 0; ~i) {

if(t[i].type = 2){
vehicleid = t[i].id;
t[i] .vehicle = vebicle_id;

}
if (t[i].type = 1) t[i].vehicle = vehicleid;

}
d_best = 99999;
ch_i = ch_spi = ch_d = esc_i = esc_d = 0;
i = nn_partial;

} /* end for i - search for predecessors */
free(locx);
free(loctemp);
free(loctemp2);
free(oldtour);
free(oldtour2);
return;

}
/* Performs "depth" number sequence of swaps and returns a pointer to the resulting tour
structure vector.*/
void iinsert (is, t, depth, n)

210

int is; /* The node to be inserted.*/
NODE *t; /* The current tour pointer.*/
int depth; /* The depth of the insertion (depth> 0) => later; (depthO) => earlier in the tour.*/
int n; /* The number of nodes in the tour.*/

register intj;
NODE x;
intz;
if (depth >0) {

for (j=0;j< depth;++j){

/* Indices for counting.*/
/* Temporary variable for the SWAP macro.*/

/* && (t[is+j].succ != t[is+j+l].id || t[is+j].id != t[is+j+l].pred); ++j) { */
SWAP(t[is+j].vehicle, t[is+j+l].vehicle, z);
SWAP(t[is+j],t[is+j+l],x);

}
} /* endif */
else {

for (j=0; j > depth; -j){
/* && (t[is+j].pred != t[is+j+l].id || t[is+j].id != t[is+j-l].succ); -j) { */

SWAP(t[is+j].vehicle, t[is+j-l].vehicle, z);
SWAP(t[is+j],t[is+j-l],x);

}
} /* end else */
return;

} /* end of the Insertion function. */
void main(void)
{

int numpbms;
int gamma = 0;
int *cap;
inti;
int iters;
float *soln;
FILE *ifp;
FILE *ofp;
FILE *ofpi;
FILE *fpinit;
charfileloc[30];

/*The number of different problems to solve.*/
/*The penalty for using an additional vehicle.*/
/*The vector of vehicle capacities by problem.*/
/*Index.*/
/*The desired number of iterations.*/
/*The array of the solution parameters.*/
/*The pointer to the problem input file.*/
/*The pointer to the problem output file.*/
/*The pointer to the individual output file.*/
/*The pointer to the initial tour data.*/
/*The directory location of the data files.*/

char filename[50]; /*The exact file name.*/
char infile[21]; /*The character array name of the input file.*/
char outfile[21]; /*The char array name of the output file.*/
char *p; /*Character pointer used to "clean up" filenames.*/
char **pbm; /*The problem name.*/
double twpen; /*The TW Penalty term.*/
double startpen; /*The starting penalty.*/
double endpen; /*The ending penalty.*/
double penincr; /*The penalty incremental value.*/
double vpen = 100.0; /*The penalty factor for vehicle overload.*/

211

/*From stdio, input the number of problems to be attempted and the number of iterations to be
performed on each problem.*/

input_fh(fileloc);
printf("\nHow many problems do you want to solve?\t");
scanfC%d", &numpbms);
pbm = (char **)calloc(numpbms, sizeof(char *));
for (i=0; i<numpbms; ++i)

pbm[i] = (char *)calloc(MAXPBM, sizeof(char));
cap = (int *)calloc(numpbms, sizeof(int));
printf("\nHow many iterations (per problem) do you want to use?\t");
scanf("%d", &iters);
startpen = 1;
twpen = startpen; /*Input the starting penalty.*/
endpen= 1;
penincr= 1;
printf("\nlnput the problem name and vehicle capacity for the problem.\n");
for (i=0; i<numpbms; ++i)

scanf("%s %d", pbm[i], &cap[i]);
input_vpen(&vpen);

/*Open the individual problem output file.*/
ofpi = fopen("wes.out", "a");
fprintf(ofpi,"The results for the problems for %d iterations each are:\n", iters);
fprintf(ofpi,"The vehicle overload penalty is: %6.1f.\n", vpen);
fclose(ofpi);

/*Open the individual problem output file.*/
fpinit = fopen("wbinit.out", "a");
fprintf(fpinit,"The results for the problems for %d iterations each are:\n", iters);
fprintf(fpinit,"The vehicle overload penalty is: %6.1f.\n", vpen);
fclose(fpinit);

/* MAJOR LOOP*/
for(twpen; twpen <= endpen; twpen += penincr) {

/♦Print the initial data to the individual summary output file: vrpstart.iout.*/
ofpi = fopen("wes.out", "a");
fprintf(ofpi,"The penalty term is: %5.2fvn\n", twpen);
fprintf(ofpi," FEAS TVL ITER Best TVL TOT\n");
fprintf(ofpi, " PROBLEM Zc(T) TIME VEH NO Time TIME PEN VEH

TIME\n\n"); /*Print the initial data to initialout.*/
fpinit = fopen("wbinit.out", "a");
fprintf(fpinit)"The time windows penalty term is: %5.2f\n\n", twpen);
fprintiltfpinit," PROBLEM Zt(T) VEH Time\n\n");
fclose(fpinit);
for (i = 0; i < numpbms; ++i) {

strcpy(infile, pbm[i]);
p = strrchr(infile, '\n'); /* remove newline if found */

212

if(p!=NULL)*p = '\Ol;
printf("%s\n", infile);

/♦Copy directory location into the filename, and add the filename to it.*/
strcpy(filename, fileloc);
strcat(filename, infile);
strcat(filename, ".dat");
printf ("%s\n",filename);

/♦Copy the input file to the output file and append "out" to the filename.*/
strcpy(outfile, infile);
strcat(outfile, ".out");

/*Open the output file for the individual problem.*/
ofp = fopen(outfile, "a");
fprintf(ofp,"%8s ", outfile);
fclose(ofp);
ofp = fopen(outfile, "a");

/*Print the problem name to initial.out and close it.*/
fpinit = fopen("wbinit.out", "a");
fprintf(fpinit)"%8s ", infile);
if((ifp = fopen(filename, "r")) = NULL)

fprintf (fpinit," The file was not opened");
else fprintf (fpinit," The file was opened");
fclose(fpinit);

/* The tabu search routine. */
soln = t_search(ifp, ofp, iters, twpen, gamma, vpen, cap[i],infile[21]);

/♦Output the individual problem results to the summary file.*/
fprintf(ofpi, "%8s %6.1f %6.1f %3d %4d %8.2f| %6.1f %5.1f

%3d %10.2f\n",infile, soln[0], soln[l], ((soln[7] > 0)?
(int)soln[12]: (int)solntl3]), (int) soln[2], soln[6], soln[3],
soln[4], (int) soln[13], soln[9]);

prints " FEAS TVL ITER Best TVL TOT\n");
printf(" PROBLEM Zc(T) TIME VEH NO Time TIME

PEN VEH TIME\n\n");
printf("%8s%6.1f %6.1f%3d%4d %8.2fl %6.1f %5.1f %3d

%10.2f\n",infile, soln[0], solnfl], ((soln[7] > 0)? (int)soln[12]:
(int)soln[13]), (int) soln[2], soln[6], soln[3], soln[4],
(int) soln[13], soln[9]);

fclose(ifp);
fclose(ofp);

}/*end for numpbms*/
fprintf(ofpi,"\n\n");
fclose(ofpi);

} /*end for pen*/
printf("\a\nFINISHED!...The output is in the file named wes.out,\n");

}/* end of main program */

213

void input_fh(char *fileloc)
{

inti;
char c, d;
char f[40];
char g[5];
strcpy(f,7u/wes/nanu/n");
printf("\nThe Solomon problems have 25, 50, or 100 customer problems.\n");
printf("Which problem set is required?\t");
gets(g);
strcat(f, g);
strcat(f, "/M);
printf("\n\nThe file location is \t<%s>.\n", f);
printf("Is this the correct location? <Y, N>\t");
for (i=0; (c = getchar()) != V; ++i) d = c;
while (d != Y && d != 'y') {

printf("\nPlease input the name of the directory where your data files are located.\n");
gets(f);
printf("The file location is %s.\n", f);
printfC'Is this the correct location? <Y, N>\t");
for (i=0; (c = getchar()) != V; ++i) d = c;

} /*end while*/
/*Copy the correct input filename to fileloc for the main program.*/

for(i=0; (fileloc[i] = f[i]) != '\0'; ++i);
return;

}/*end of input file name function.*/

214

Reference List

Atkinson, Ben J (1994), A Greedy Look-ahead Heuristic for Combinatorial
Optimization: An Application to Vehicle Scheduling with Time
Windows, Journal of the Operational Research Society, vol. 45, no. 6, pp.
673-684.

Baker, Edward K. and Joanne R. Schaffer (1986), Solution Improvement
Heuristics for the Vehicle Routing and Scheduling Problem with Time
Window Constraints, American Journal of Mathematical and
Management Sciences, Vol. 6, Nos. 3 & 4, pp. 261-300.

Balakrishnan, Nagraj (1993), Simple Heuristics for the Vehicle Routing Problem
with Soft Time Windows, Journal of the Operational Research Society,
vol. 44, no. 3, pp. 279-287.

Barnes, J.W. and W.B. Carlton (1995), "Solving the Vehicle Routing Problem
with Time Windows Using Reactive Tabu Search," presented at the Fall
INFORMS Conference in New Orleans, Louisiana, October 31,1995.

Battiti, R. and G. Tecchiolli (1994), The Reactive Tabu Search, ORSA Journal of
Computing, vol. 6, no. 2, pp. 126-140.

Battiti, Roberto (1995), Reactive Search: Toward Self-Tuning Heuristics,
Keynote talk at Applied Decision Technologies, 3-4 April 1995,
Brunei, UK.

Baugh, John W. Jr (1995), Multiobjective Optimization of the Dial-a-Ride
Problem Using Simulated Annealing, Computing in Civil Engineering,
vol. 1, pp. 278-285.

Beaujon, George J. and Mark A. Turnquist (1991), Model for Fleet Sizing and
Vehicle Allocation, Transportation Science, vol. 25, no. 1, pp. 19-45.

Bianco, L., A. Mingozzi, S. Ricciardelli and M. Spadoni (1994), Exact and
Heuristic Procedures for the Traveling Salesman Problem with
Precedence Constraints, Based on Dynamic Programming, Infor, vol. 32,
no. l,pp. 19-32.

215

Bodin, L, B. Golden, A. Assad and M. Ball (1983), Routing and Scheduling of
Vehicles and Crews: The State of the Art, Computers and Operations
Research, vol. 10, No. 2, pp. 62-211.

Bramel, J., C.L. Li and D. Simchi-Levi (1993), Probabilistic Analysis of a
Vehicle Routing Problem with Time Windows, American Journal of
Mathematical and Management Sciences, vol. 13, nos. 3 & 4,
pp. 267-322.

Buyang, Cao and Götz Uebe (1995), Solving Transportation Problems with
Nonlinear Side Constraints with Tabu Search, Computers and Operations
Research, vol. 22, no. 6, pp. 593-603.

Carlton, W.B. (1995), A Tabu Search Approach to the General Vehicle Routing
Problem, Ph. D. Dissertation, Department of Mechanical Engineering,
University of Texas at Austin.

Carlton, W.B. and J.W. Barnes (1995), A Note on Hashing Functions and Tabu
Search Algorithms, European Journal of Operational Research, vol. 95,
pp. 237-239 .

Chao, I.M., Bruce Golden and Edward Wasil (1993), A New Heuristic for the
Multi-Depot Vehicle Routing Problem that Improves Upon Best-Known
Solutions, American Journal of Mathematical and Management Sciences,
vol. 13, nos. 3 & 4, pp. 371-406.

Christofides, N, A. Mignozzie and P. Toth (1981), State-Space Relaxation
Procedures for the Computation of Bounds to Routing Problems,
Networks, vol. 11, pp. 145-164.

Clarke, G. and J.W. Wright (1964), Scheduling of Vehicles from a Central Depot
to a Number of Delivery Points, Operations Research, vol. 12,
p. 568-581.

Dantzig, G.B. and K.H. Ramser (1959), The Truck Dispatching Problem,
Operations Research, vol. 12, pp. 80-91.

216

Derigs, U. and G. Grabenbauer (1993), Intime - A New Heuristic Approach to
the Vehicle Routing Problem with Time Windows with a Bakery Fleet
Case, American Journal of Mathematical and Management Sciences,
vol. 13, nos. 3 & 4, pp. 249-266.

Desrochers, M., J. Desrosiers and M. M. Solomon (1992), A New Optimization
Algorithm for the Vehicle Routing Problem with Time Windows,
Operations Research, vol. 40, pp. 342-354 .

Desrochers, M. and T.W. Verhoog (1991), New heuristic for the Fleet Size and
Mix Vehicle Routing Problem, Computers and Operations Research,
vol. 18, no. 3, pp. 263-274.

Desrochers, M, J.K. Lenstra and M.W.P Savelsbergh (1990), A Classification
Scheme for Vehicle Routing, European Journal of Operational Research,
vol. 46, pp. 322-332.

Desrochers, M, J.K. Lenstra, M.W.P. Savelsbergh and F. Soumis (1988), Vehicle
Routing with Time Windows: Optimization and Approximation, Vehicle
Routing: Methods and Studies, Elsevier, New York.

Desrochers, Martin and Francois Soumis (1988), A Generalized Permanent
Labeling Algorithm for the Shortest Path Problem with Time Windows,
INFOR, vol. 26, no. 3, pp. 191-212.

Desrosiers, J., Y. Dumas, M. Solomon and F. Soumis (1995), Time Constrained
Routing and Scheduling, Handbooks on Operational Research and
Management Science, vol. 8, Network Routing, M.O. Ball, T.L.
Magnanti, C.L. Monma and G.L. Nemhauser eds., Amsterdam,
North-Holland Press, pp. 35-139.

Desrosiers, J., G. LaPorte, M. Sauve, F. Soumis and S. Taillefer (1988), Vehicle
Routing with Full Loads, Computers and Operations Research, vol. 15,
no. 3, pp. 219-226.

Desrosiers, J., F. Soumis and M. Desrochers (1984), Routing with Time
Windows by Column Generation, Networks, vol. 14, pp. 545-565.

217

Dror, Moshe (1994), Note on the Complexity of the Shortest Path Models for
Column Generation in VRPTW, Operations Research, vol. 42, no. 5,
pp. 977-978.

Dumas, Y., J. Desrosiers, E. Gelinas and M. Solomon (1995), An Optimal
Algorithm for the Traveling Salesman Problem with Time Windows,
Operations Research, vol. 43, no. 2, pp. 367-371.

Dumas, Y., J. Desrosiers and F. Soumis (1991), The Pickup and Delivery
Problem with Time Windows, European Journal of Operational
Research, vol. 54, pp. 7-22.

Fisher, Marshall, K. Jornsten and O. Madsen (1997), Vehicle Routing with Time
Windows: Two Optimization Algorithms, Operations Research, vol. 45,
no. 3, pp. 488-492.

Fisher, Marshall (1995), Vehicle Routing, Handbooks on Operational Research
and Management Sciences, vol. 8, Network Routing, M.O. Ball, T.L.
Magnanti, C.L. Monma and G.L. Nemhauser eds., Amsterdam,
North-Holland Press, pp. 1-33.

Fisher, M.L. and R. Jaikumar (1981), A Generalized Assignment Heuristic for
Vehicle Routing, Networks, vol. 11, pp. 109-124.

Frizzell, P.W. and J.W. Griffin (1995), The Split Delivery Vehicle Scheduling
Problem with Time Windows and Grid Network Distances, Computers
and Operations Research, vol. 22, no. 6, pp. 655-667.

Garcia, B.L., J. Potvin and J. Rousseau (1944), A Parallel Implementation of the
Tabu Search Heuristic for Vehicle Routing Problems with Time Window
Constraints, Computers and Operations Research, vol. 21, no. 9,
pp. 1025-1033.

Gendreau, M., A. Hertz and G. LaPorte (1994), A Tabu Search Heuristic for the
Vehicle Routing Problem, Management Science, vol.. 40, no. 10,
pp. 1276-1290.

218

Glover, Fred (1996), Tabu Search and Adaptive Memory Programming
Advances, Applications and Challenges, to appear in Interfaces in
Computer Science and Operations Research.

Glover, Fred (1996), Reflections and Research Possibilities, e-mail to Dr. Wes
Barnes.

Glover, Fred (1995), "Tabu Search Fundamentals and Uses." Graduate School of
Business, University of Colorado, condensed version published in
Mathematical Programming: State of the Art, Birge and Murty, eds.,
pp. 64-92.

Glover, Fred (1990), Tabu Search: A Tutorial, Interfaces, vol. 20, no. 4,
pp. 74-94.

Glover, Fred (1989), Tabu Search - Part I, ORSA Journal of Computing, vol. 1,
no. 3, pp. 190-206.

Goetschalckx, M. and C. Jacobs-Blechs (1989), The Vehicle Routing Problem
with Backhauls, European Journal of Operational Research, vol. 42,
pp. 39-51.

Golden, Bruce L. and Arjang A. Assad (1986), Vehicle Routing with
Time-Window Constraints, American Journal of Mathematical and
Management Sciences, nos. 3 & 4, pp. 251-260.

Healy, Patrick and Robert Moll (1995), A New Extension of Local Search
Applied to the Dial-a-Ride Problem, European Journal of Operational
Research, vol. 83, pp. 83-104.

Horowitz, E., S. Sahni an S. Anderson-Freed (1993), Fundamentals of Data
Structures in C, New York, W.H. Freeman and Company.

Jarvis, JJ. and O. Kirca (1985), Pick-up and Delivery Problem: Models and
Single Vehicle Exact Procedures, PDRC Report Series 84-12.

Jensen, Paul and J.W. Barnes (1980), Network Flow Programming, New York,
NY, John Wiley& Sons.

219

Kalantari, B., A.V. Hill and S.R. Arora (1985), An Algorithm for the Traveling
Salesman Problem with Pickup and Delivery Customers, European
Journal of Operational Research, vol. 22, pp. 377-386.

Kantor, Marisa G. and Moshe B. Rosenwein (1992), The Orienteering Problem
with Time Windows, Journal of the Operational Research Society,
vol. 43, no. 6, pp. 629-635.

Kelly, J, B. Golden and A. Assad (1993), Large-scale Controlled Rounding using
Tabu Search with Strategic Oscillation, Annals of Operations Research,
vol. 41, pp. 69-84.

Kohl, Niklas (1995), Exact Method for Time Constrainted Routing and
Scheduling Problems,,Ph.D. Dissertation, Department of Mathematics
University of Copenhagen, Denmark..

Kohl, Niklas and Oli B.G. Madsen (1997), An Optimization Algorithm for the
Vehicle Routing Problem with Time Windows Based on Lagrangian
Relaxation, Operations Research, vol. 45, no. 3, pp. 395-406.

Kolen, A.W.J., A.H.G. Rinooy Kan and H.W.J.M. Trienekens, (1987), Vehicle
Routing with Time Windows, Operations Research, vol. 35, no. 2,
pp. 266-273.

Kontoravdis, G. and J. Bard (1993), Improved Heuristics for the Vehicle Routing
Problem with Time Windows, Working Paper, Operations Research
Group, Department of Mechanical Engineering, The University of Texas
at Austin, Austin, TX.

Koskosidis, Y., W. Powell and M. Solomon (1992), An Optimization-Based
Heuristic for Vehicle Routing and Scheduling with Soft Time Window
Constraints, Transportation Science, vol. 26, no. 2, p. 69-85.

Koskosidis, Y.A. and W.B. Powell (1990), Application of Optimization Based
Models on Vehicle Routing, Journal of Business Logistics, vol. 11,
pp. 101-127.

220

Landeghem, H.R.G. (1988), A Bi-Criteria Heuristic for the Vehicle Routing
Problem with Time Windows, European Journal of Operational
Research, vol. 36, pp. 217-226.

LaPorte, Gilbert (1992), The Vehicle Routing Problem: An Overview of Exact
and Approximate Algorithms, European Journal of Operational
Research, vol. 59, pp. 345-358.

Mingozzi, A., L. Bianco and S. Ricciardelli (1997), Dynamic Programming
Strategies for the Traveling Salesman Problem with Time Window and
Precedence Constraints, Operations Research, vol. 45, no. 3,
pp. 365-376.

Or, I. (1976), Traveling Salesman-Type Combinatorial Optimization Problems
and Their Relation to the Logistics of Blood Banking, Ph.D. dissertation,
Department of Industrial Engineering and Management Sciences,
Northwestern University, Evanston, Illinois.

Osman, I.H. (1993), Metastrategy Simulated Annealing and Tabu Search
Algorithms for the Vehicle Routing Problem, Annals of Operations
Research, vol. 41, pp. 421-451.

Potvin, J., T. Kervahut, B. Garcia and J. Rousseau (1993), A Tabu Search
Heuristic for the Vehicle Routing Problem with Time Windows, Working
Paper, Centre de Recherche sur les Transports, Universite de Montreal,
Montreal, CA.

Potvin, J.Y. and J.M. Rousseau (1993), A Parallel Route Building Algorithm for
the Vehicle Routing and Scheduling Problem with Time Windows,
European Journal of Operational Research, vol. 66, pp. 331-340.

Potvin, Jean-Yves and Jean-Marc Rousseau (1995), An Exchange Heuristic for
Routing Problems with Time Windows, Journal of the Operational
Research Society, vol. 46, pp. 1433-1446.

Psaraftis, H. (1980), A Dynamic Programming Solution to the Single Vehicle
Many-to-Many Immediate Request Dial-a-Ride Problem, Transportation
Science,vo\. 14, pp. 130-154.

221

Psaraftis, H. (1983), An Exact Algorithm for the Single Vehicle Many-to-Many
Dial-A-Ride Problem with Time Windows, Transportation Science,
vol. 17, No. 3, pp. 351-361.

Psaraftis, H. (1986), Scheduling Large-Scale Advance-Request Dial-a-Ride
Systems, American Journal of Mathematical and Management Sciences,
vol. 6, Nos. 3 & 4, pp. 327-367.

Punnen, Abraham P. and Y.P Aneja (1995), A Tabu Search Algorithm for the
Resource-Constrained Assignment Problem, Journal of the Operational
Research Society, vol. 46, pp. 214-220.

Raghavendra A., T.S. Krishnakumar, R. Muralidhar and D. Sarvanan (1992), A
Practical Heuristic for a Large Scale Vehicle Routing Problem, European
Journal of Operational Research, vol. 57, pp. 32-38.

Reeves, Colin (1993), Improving the Efficiency of Tabu Search for Machine
Sequencing Problems, Journal of the Operational Research Society,
vol. 44, no. 4, pp. 375-382.

Rego, Cesar and C. Roucairol (1995), Using Tabu Search for Solving a Dynamic
Multi-Terminal Truck Dispatching Problem, European Journal of
Operational Research, vol. 83, pp. 411-429.

Rochat, Y and F. Semet (1994), A Tabu Search Approach for Delivering Pet
Food and Flour in Switzerland, Journal of the Operational Research
Society, vol. 45, no. 11, pp. 1233-1245.

Ruland, Scott (1995), Polyhedral Solution to the Pickup and Delivery Problem,
Ph.D. Dissertation, Washington University Sever Institute of Technology.

Savelsbergh, M.W.P. (1992), The Vehicle Routing Problem with Time Windows:
Minimizing Route Duration, ORSA Journal on Computing, vol. 4,
pp. 146-154.

Savelsbergh, M.W.P. (1990), An efficient implementation of local search
algorithms for constrained routing problems, European Journal of
Operations Research, vol. 47, pp. 75-85.

222

Semet, F. and E. Taillard (1993), Solving Real-Life Vehicle Routing Problems
Efficiently Using Tabu Search, Annals of Operations Research, vol. 41,
pp. 469-488.

Sexton, Thomas R. and Lawrence D. Bodin (1985a). Optimizing Single Vehicle
Many-to-Many Operations with Desired Delivery Times: I. Scheduling,
Transportation Science, vol. 19, no. 4, pp. 378-410.

Sexton, Thomas R. and Lawrence D. Bodin (1985b). Optimizing Single Vehicle
Many-to-Many Operations with Desired Delivery Times: II. Routing,
Transportation Science, vol. 19, no. 4, pp. 411-435.

Sexton, Thomas R. and Young-Myung Choi (1986), Pickup and Delivery of
Partial Loads with "Soft" Time Windows, American Journal of
Mathematical and Management Sciences, vol. 6, nos. 3 & 4, pp. 369-398.

Sharma, R.R.K. (1995), Modeling a Railway Freight Transport System,
Asia-Pacific Journal of Operations Research, vol. 12, pp. 17-36.

Solomon, M.M., E.K. Baker and J.R. Schaffer (1988), Vehicle Routing and
Scheduling Problems with Time Window Constraints: Efficient
Implementations of Solution Improvement Procedures, Vehicle Routing:
Methods and Studies, pp. 85-105, North-Holland, Amsterdam.

Solomon, M., and J. Desrosiers (1988), Survey Paper: Time Window
Constrained Routing and Scheduling Problems, Transportation Science,
vol. 22, no. l,pp. 1-13.

Solomon, Marius M. (1986), On the Worst-Case Performance of Some Heuristics
for the Vehicle Routing and Scheduling Problem with Time Window
Constraints, Networks, vol. 16, pp. 161-174.

Solomon, M. (1987), Algorithms for the Vehicle Routing and Scheduling
Problems with Time Window Constraints, Operations Research, vol. 35,
no. 2, pp. 254-265.

223

Stewart, W.R., J.P. Kelly and M. Laguna (1993), Solving Vehicle Routing
Problems Using Generalized Assignments and Tabu Search, Working
Paper, Graduate School of Business Administration, The College of
William and Mary, Williamsburg, VA.

Taillard, E., P. Badeau, M. Gendreau, F. Guertin and J. Potvin (1996), A New
Neighborhood Structure for the Vehicle Routing Problem with Time
Windows, working paper to appear in Transportation Science.

Timlin, M.T. Fiala and W.R. Pulleyblank (1992), Precedence Constrained
Routing and Helicopter Scheduling: Heuristic Design, Interfaces, vol. 22,
no. 3, pp. 100-111.

Thompson, P.M. and H. Psaraftis (1993), Cyclic Transfer Algorithms for
Multivehicle Routing and Scheduling Problems, Operations Research,
vol. 41, no. 5, pp. 935-946.

Van der Bruggen, L.J.J., J.K. Lenstra, and P.C. Schuur (1993), Variable-Depth
Search for the Single Vehicle Pickup and Delivery Problem with Time
Windows, Transportation Science, vol. 27, no. 3, pp. 298-311.

224

Vita

William Paul Nanry was born in East Patchogue, New York^ on June 17,

1957, the son of Muriel Theresa Nanry and James Joseph Nanry, Sr. After

completing his work at Connetquot High School, Bohemia, New York, in June of

1975, he entered the United States Military Academy (USMA) in West Point,

New York. He received the degree of Bachelor of Science from USMA and was

commissioned a second lieutenant in the United States Army Corps of Engineers

in June 1979. During the following years he was employed in numerous

positions in the Army to include serving as a commander of a 165-man combat

engineer company at Fort Devens, Massachusetts. Due to his exemplary service,

he was afforded the opportunity to attend the University of Texas at Austin and

earned a Master of Arts in Mathematics in May of 1989. While serving as an

Assistant Professor in the Mathematics Department at USMA, he switched his

military specialty to Operations Research. Lieutenant Colonel Nanry initiated his

studies toward the Doctor of Philosophy degree in Operations Research upon

enrolling at the University of Texas at Austin in August of 1994.

Permanent Address: 4301 Candlestick Court, Montclair, VA 22026.

This report was typed by the author.

225

T0"d lüiOl

PLEASE CHECK THE APPROPRIATE BLOCK BELOW:
-AOtf

LJ _.. copies are being forwarded. Indicate whether Statement A. B. C. D. E, F. or X applies

D

D

D

D

D

D
D
□

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

DISTRIBUTION STATEMENT B;
DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES

ONLY; (Indicate Reason and Date). OTHER REQUESTS FOR THIS
DOCUMENT SHALL BE REFERRED TO (Indicate Controlling DoD Office).

DISTRIBUTION STATEMENT C:
DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND

THEIR CONTRACTORS; (Indicate Reason and Date). OTHER REQUESTS
FOR THIS DOCUMENT SHALL BE REFERRED TO (Indicate Controlling DoD Office).

DISTRIBUTION STATEMENT D:
DISTRIBUTION AUTHORIZED TO DoD AND U.S. DoD CONTRACTORS

ONLY; (Indicate Reason and Date). OTHER REQUESTS SHALL BE REFERRED TO
(Indicate Controlling DoD Office).

DISTRIBUTION STATEMENT E:
DISTRIBUTION AUTHORIZED TO DoD COMPONENTS ONLY; (Indicate

Reason and Date). OTHER REQUESTS SHALL BE REFERRED TO (Indicate Controlling DoD Office).

DISTRIBUTION STATEMENT F:
FURTHER DISSEMINATION ONLY AS DIRECTED BY (Indicate Controlling DoD Office and Date) or HIGHER

DoD AUTHORITY.

DISTRIBUTION STATEMENT X:
DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES

AND PRIVATE INDIVIDUALS OR ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED
TECHNICAL DATA IN ACCORDANCE WITH DoD DIRECTIVE 5230.25. WITHHOLDING OF
UNCLASSIFIED TECHNICAL DATA FROM PUBLIC DISCLOSURE. 6 Nov 1984 (Indicate date of determination).
CONTROLLING DoD OFFICE IS (Indicate Controlling DoD Office).

This document was previously forwarded to DTIC on (date) and the
AD number is .

In accordance with provisions of DoD instructions, the document requested is not supplied because:

It will be published at a later date. (Enter approximate date, if known).

Other. (Give Reason)

DoD Directive 5230.24, "Distribution Statements on Technical Documents," 18 Mar 8*7, contains seven distribution statements, as
described briefly above. Technical Documents must be assigned distribution statements.

y(kJlLUftM ft L)A/Ü/ZU>
*S*ie / Print or Tyj

y ?//*/?? x tick
T0/T0-d \ / 91? :L0 866T-£0-Nni

